Commit Graph

19 Commits

Author SHA1 Message Date
ab2fb72761 createRegionMesh.H, createRegionMeshNoChangers.H: New include files to construct a region mesh 2024-01-26 10:03:24 +00:00
0657826ab9 Replaced all remaining addTimeOptions.H includes with the more flexible timeSelector 2023-06-23 15:24:06 +01:00
ed7e703040 Time::timeName(): no longer needed, calls replaced by name()
The timeName() function simply returns the dimensionedScalar::name() which holds
the user-time name of the current time and now that timeName() is no longer
virtual the dimensionedScalar::name() can be called directly.  The timeName()
function implementation is maintained for backward-compatibility.
2022-11-30 15:53:51 +00:00
3ef3e96c3f Time: Added run-time selectable userTime option
replacing the virtual functions overridden in engineTime.

Now the userTime conversion function in Time is specified in system/controlDict
such that the solver as well as all pre- and post-processing tools also operate
correctly with the chosen user-time.

For example the user-time and rpm in the tutorials/combustion/XiEngineFoam/kivaTest case are
now specified in system/controlDict:

userTime
{
    type     engine;
    rpm      1500;
}

The default specification is real-time:

userTime
{
    type     real;
}

but this entry can be omitted as the real-time class is instantiated
automatically if the userTime entry is not present in system/controlDict.
2021-10-19 09:09:01 +01:00
cf552e6343 utilities: Rationalised and standardised the handling of the -dict option 2021-03-05 13:42:46 +00:00
48cc85c19b setWaves: Fix typo in documentation 2020-10-07 10:10:07 +01:00
6dc48b62d9 Changed tmp<volField> and tmp<surfaceField> construction to use the new simpler "New" method
avoiding unnecessary database registration of temporary fields
2018-12-21 18:37:13 +00:00
146a59e46c GeometricField: Temporary fields are no longer registered on the database by default
Registration occurs when the temporary field is transferred to a non-temporary
field via a constructor or if explicitly transferred to the database via the
regIOobject "store" methods.
2018-12-20 11:00:37 +00:00
e592540951 setWaves: Prevent overwrite of wall fixed-value boundaries
Resoves bug report https://bugs.openfoam.org/view.php?id=3135
2018-12-19 11:23:47 +00:00
5925868fb7 waves: Moved mean velocity specification back into the wave models
With the inclusion of boundary layer modelling in the gas, the
separation of wave perturbation from and mean flow became less useful,
and potentially prevents further extension to support similar boundary
layer modelling in the liquid.

The mean velocity entry, UMean, is now needed in the
constant/waveProperties file rather than in the waveVelocity boundary
condition.
2018-12-18 10:34:40 +00:00
967edc9425 waves: Split mean flow from wave perturbation modelling
In order to increase the flexibility of the wave library, the mean flow
handling has been removed from the waveSuperposition class. This makes
waveSuperposition work purely in terms of perturbations to a mean
background flow.

The input has also been split, with waves now defined as region-wide
settings in constant/waveProperties. The mean flow parameters are sill
defined by the boundary conditions.

The new format of the velocity boundary is much simpler. Only a mean
flow velocity is required.

    In 0/U:

        boundaryField
        {
            inlet
            {
                type            waveVelocity;
                UMean           (2 0 0);
            }
            // etc ...
        }

Other wave boundary conditions have not changed.

The constant/waveProperties file contains the wave model selections and
the settings to define the associated coordinate system and scaling
functions:

    In constant/waveProperties:

        origin          (0 0 0);
        direction       (1 0 0);
        waves
        (
            Airy
            {
                length      300;
                amplitude   2.5;
                phase       0;
                angle       0;
            }
        );
        scale           table ((1200 1) (1800 0));
        crossScale      constant 1;

setWaves has been changed to use a system/setWavesDict file rather than
relying on command-line arguments. It also now requires a mean velocity
to be specified in order to prevent ambiguities associated with multiple
inlet patches. An example is shown below:

    In system/setWavesDict:

        alpha   alpha.water;
        U       U;
        liquid  true;
        UMean   (1 0 0);
2018-12-10 13:39:06 +00:00
bf54ab67e1 Updated OpenFOAM Foundation web-link in headers 2018-07-06 21:42:54 +01:00
fc2b2d0c05 OpenFOAM: Rationalized the naming of scalar limits
In early versions of OpenFOAM the scalar limits were simple macro replacements and the
names were capitalized to indicate this.  The scalar limits are now static
constants which is a huge improvement on the use of macros and for consistency
the names have been changed to camel-case to indicate this and improve
readability of the code:

    GREAT -> great
    ROOTGREAT -> rootGreat
    VGREAT -> vGreat
    ROOTVGREAT -> rootVGreat
    SMALL -> small
    ROOTSMALL -> rootSmall
    VSMALL -> vSmall
    ROOTVSMALL -> rootVSmall

The original capitalized are still currently supported but their use is
deprecated.
2018-01-25 09:46:37 +00:00
a80da1a489 Added ramping functionality for multiphase simulations
The outletPhaseMeanVelocity and waveVelocity boundary conditions now
support a "ramp" keyword, for which a function can be supplied to
gradually increase the input velocity. The following is an example
specification for an outlet patch:

    outlet
    {
        type            outletPhaseMeanVelocity;
        Umean           2;
        ramp
        {
            type            quarterSineRamp;
            start           0;
            duration        5;
        }
        alpha           alpha.water;
    }

There is also a new velocityRamping function object, which provides a
matching force within the volume of the domain, so that the entire flow
is smoothly accelerated up to the operating condition. An example
specification is as follows:

    velocityRamping
    {
        type        velocityRamping;
        active      on;
        selectionMode all;
        U           U;
        velocity    (-2 0 0);
        ramp
        {
            type        quarterSineRamp;
            start       0;
            duration    5;
        }
    }

These additions have been designed to facilitate a smoother startup of
ship simulations by avoiding the slamming transients associated with
initialising a uniform velocity field.

This work was supported by Jan Kaufmann and Jan Oberhagemann at DNV GL.
2018-01-08 09:20:28 +00:00
63c18662dd levelSet: Bug fix to volField levelSetAverage 2017-10-02 09:15:30 +01:00
a53b263b7f levelSet: Added volField-based functions 2017-10-02 09:15:30 +01:00
d04834ccfc setWaves: added Description in header 2017-07-13 10:27:25 -05:00
b255302fba setWaves: Corrected handling of multiple wave-type patches 2017-06-05 08:20:36 +01:00
e7e4683f96 waves: Added waves library and setWaves utility
This addition allows for theoretical wave models to be utilised for
initialisation and as boundary conditions. Multiple models can be used
simultaneously, each with differing phases and orientations. If multiple
models are used the shapes and velocities are superimposed.

The wave models are specified in the velocity boundary condition. The
phase fraction boundary condition and the set utility both look up the
velocity condition in order to access the wave model. A velocity
boundary may be specified as follows:

    inlet
    {
        type            waveVelocity;
        origin          (0 0 0);
        direction       (1 0 0);
        speed           2;
        waves
        (
            Airy
            {
                length      300;
                amplitude   2.5;
                depth       150;
                phase       0;
                angle       0;
            }
        );
        scale           table ((1200 1) (1800 0));
        crossScale      constant 1;
    }

The alpha boundary only requires the type, unless the name of the
velocity field is non-standard, in which case a "U" entry will also be
needed. The setWaves utility does not require a dictionary file; non-
standard field names can be specified as command-line arguments.

Wave models currently available are Airy (1st order) and Stokes2 (second
order). If a depth is specified, and it is not too large, then shallow
terms will be included, otherwise the models assume that the liquid is
deep.

This work was supported by Jan Kaufmann and Jan Oberhagemann at DNV GL.
2017-05-31 10:09:08 +01:00