Commit Graph

40 Commits

Author SHA1 Message Date
7dfb7146ea tutorials::blockMeshDict: Removed redundant mergePatchPairs and edges entries 2021-12-08 13:02:40 +00:00
65ef2cf331 physicalProperties: Standardised incompressible and compressible solver fluid properties
to provide a single consistent code and user interface to the specification of
physical properties in both single-phase and multi-phase solvers.  This redesign
simplifies usage and reduces code duplication in run-time selectable solver
options such as 'functionObjects' and 'fvModels'.

* physicalProperties
  Single abstract base-class for all fluid and solid physical property classes.

  Physical properties for a single fluid or solid within a region are now read
  from the 'constant/<region>/physicalProperties' dictionary.

  Physical properties for a phase fluid or solid within a region are now read
  from the 'constant/<region>/physicalProperties.<phase>' dictionary.

  This replaces the previous inconsistent naming convention of
  'transportProperties' for incompressible solvers and
  'thermophysicalProperties' for compressible solvers.

  Backward-compatibility is provided by the solvers reading
  'thermophysicalProperties' or 'transportProperties' if the
  'physicalProperties' dictionary does not exist.

* phaseProperties
  All multi-phase solvers (VoF and Euler-Euler) now read the list of phases and
  interfacial models and coefficients from the
  'constant/<region>/phaseProperties' dictionary.

  Backward-compatibility is provided by the solvers reading
  'thermophysicalProperties' or 'transportProperties' if the 'phaseProperties'
  dictionary does not exist.  For incompressible VoF solvers the
  'transportProperties' is automatically upgraded to 'phaseProperties' and the
  two 'physicalProperties.<phase>' dictionary for the phase properties.

* viscosity
  Abstract base-class (interface) for all fluids.

  Having a single interface for the viscosity of all types of fluids facilitated
  a substantial simplification of the 'momentumTransport' library, avoiding the
  need for a layer of templating and providing total consistency between
  incompressible/compressible and single-phase/multi-phase laminar, RAS and LES
  momentum transport models.  This allows the generalised Newtonian viscosity
  models to be used in the same form within laminar as well as RAS and LES
  momentum transport closures in any solver.  Strain-rate dependent viscosity
  modelling is particularly useful with low-Reynolds number turbulence closures
  for non-Newtonian fluids where the effect of bulk shear near the walls on the
  viscosity is a dominant effect.  Within this framework it would also be
  possible to implement generalised Newtonian models dependent on turbulent as
  well as mean strain-rate if suitable model formulations are available.

* visosityModel
  Run-time selectable Newtonian viscosity model for incompressible fluids
  providing the 'viscosity' interface for 'momentumTransport' models.

  Currently a 'constant' Newtonian viscosity model is provided but the structure
  supports more complex functions of time, space and fields registered to the
  region database.

  Strain-rate dependent non-Newtonian viscosity models have been removed from
  this level and handled in a more general way within the 'momentumTransport'
  library, see section 'viscosity' above.

  The 'constant' viscosity model is selected in the 'physicalProperties'
  dictionary by

      viscosityModel  constant;

  which is equivalent to the previous entry in the 'transportProperties'
  dictionary

      transportModel  Newtonian;

  but backward-compatibility is provided for both the keyword and model
  type.

* thermophysicalModels
  To avoid propagating the unnecessary constructors from 'dictionary' into the
  new 'physicalProperties' abstract base-class this entire structure has been
  removed from the 'thermophysicalModels' library.  The only use for this
  constructor was in 'thermalBaffle' which now reads the 'physicalProperties'
  dictionary from the baffle region directory which is far simpler and more
  consistent and significantly reduces the amount of constructor code in the
  'thermophysicalModels' library.

* compressibleInterFoam
  The creation of the 'viscosity' interface for the 'momentumTransport' models
  allows the complex 'twoPhaseMixtureThermo' derived from 'rhoThermo' to be
  replaced with the much simpler 'compressibleTwoPhaseMixture' derived from the
  'viscosity' interface, avoiding the myriad of unused thermodynamic functions
  required by 'rhoThermo' to be defined for the mixture.

  Same for 'compressibleMultiphaseMixture' in 'compressibleMultiphaseInterFoam'.

This is a significant improvement in code and input consistency, simplifying
maintenance and further development as well as enhancing usability.

Henry G. Weller
CFD Direct Ltd.
2021-07-30 17:19:54 +01:00
15a27fee87 topoSet: the sourceInfo sub-dictionary of the topoSetDict actions is now optional
and only needed if there is a name clash between entries in the source
specification and the set specification, e.g. "name":

    {
        name    rotorCells;
        type    cellSet;
        action  new;
        source  zoneToCell;
        sourceInfo
        {
            name    cylinder;
        }
    }
2021-07-27 14:07:37 +01:00
78977d3259 systemDict: Added support for system as the default directory for the -dict option
With this change both

    blockMesh -dict fineBlockMeshDict
    blockMesh -dict system/fineBlockMeshDict

are supported, if the system/ path is not specified it is assumed
2021-07-02 21:05:47 +01:00
9c73d4d206 decomposeParDict: The 'delta' entry for geometric decomposition is no option and defaults to 0.001
When using 'simple' or 'hierarchical' decomposition it is useful to slightly rotate a
coordinate-aligned block-mesh to improve the processor boundaries by avoiding
irregular cell distribution at those boundaries.  The degree of slight rotation
is controlled by the 'delta' coefficient and a value of 0.001 is generally
suitable so to avoid unnecessary clutter in 'decomposeParDict' 'delta' now
defaults to this value.
2021-06-24 10:18:20 +01:00
01494463d0 FoamFile: 'version' entry is now optional, defaulting to 2.0
The FOAM file format has not changed from version 2.0 in many years and so there
is no longer a need for the 'version' entry in the FoamFile header to be
required and to reduce unnecessary clutter it is now optional, defaulting to the
current file format 2.0.
2021-06-23 20:50:10 +01:00
5f64d07ca8 tutorials: remove redirects to /dev/null 2021-06-21 16:44:38 +01:00
926ba22b74 refineMesh: Rationalised and standardised the coordinate axes naming to e1, e2 and e3
the previous naming tan1, tan2, normal was non-intuitive and very confusing.

It was not practical to maintain backward compatibility but all tutorials and
example refineMeshDict files have been updated to provide examples of the
change.
2021-06-15 16:08:55 +01:00
7f5144312e Renamed turbulenceProperties -> momentumTransport
Following the generalisation of the TurbulenceModels library to support
non-Newtonian laminar flow including visco-elasticity and extensible to other
form of non-Newtonian behaviour the name TurbulenceModels is misleading and does
not properly represent how general the OpenFOAM solvers now are.  The
TurbulenceModels now provides an interface to momentum transport modelling in
general and the plan is to rename it MomentumTransportModels and in preparation
for this the turbulenceProperties dictionary has been renamed momentumTransport
to properly reflect its new more general purpose.

The old turbulenceProperties name is supported for backward-compatibility.
2020-04-10 17:17:37 +01:00
b7b678bceb tutorials: Updated the momentum transport model type selection
renaming the legacy keywords
    RASModel -> model
    LESModel -> model
    laminarModel -> model

which is simpler and clear within the context in which they are specified, e.g.

RAS
{
    model               kOmegaSST;
    turbulence          on;
    printCoeffs         on;
}

rather than

RAS
{
    RASModel            kOmegaSST;
    turbulence          on;
    printCoeffs         on;
}

The old keywords are supported for backward compatibility.
2020-04-07 13:11:50 +01:00
0177c7dd59 functionObjects::fieldAverage: Simplified the controls
Rather than specifying the controls per field it is simpler to use a single set
of controls for all the fields in the list and use separate instances of the
fieldAverage functionObject for different control sets:

    Example of function object specification setting all the optional parameters:
    fieldAverage1
    {
        type                fieldAverage;
        libs                ("libfieldFunctionObjects.so");

        writeControl        writeTime;

        restartOnRestart    false;
        restartOnOutput     false;
        periodicRestart     false;
        restartPeriod       0.002;

        base                time;
        window              10.0;
        windowName          w1;

        mean                yes;
        prime2Mean          yes;

        fields              (U p);
    }

This allows for a simple specification with the optional prime2Mean entry using

    #includeFunc fieldAverage(U, p, prime2Mean = yes)

or if the prime2Mean is not needed just

    #includeFunc fieldAverage(U, p)
2020-03-17 20:15:17 +00:00
46c790dd09 functionObjects::fieldAverage: Simplified the interface by the introduction of defaults
The mean, prime2Mean and base now have default values:

    {
        mean            on;   // (default = on)
        prime2Mean      on;   // (default = off)
        base            time; // time or iteration (default = time)
        window          200;  // optional averaging window
        windowName      w1;   // optional window name (default = "")
    }

so for the majority of cases for which these defaults are appropriate the
fieldAverage functionObject can now be specified in the functions entry in
controlDict thus:

functions
{
    fieldAverage1
    {
        #includeEtc "caseDicts/postProcessing/fields/fieldAverage.cfg"

        fields
        (
            U.air
            U.water
            alpha.air
            p
        );
    }
}

also utilising the new fieldAverage.cfg file.

For cases in which these defaults are not appropriate, e.g. the prime2Mean is
also required the optional entries can be specified within sub-dictionaries for
each field, e.g.

    fieldAverage1
    {
        #includeEtc "caseDicts/postProcessing/fields/fieldAverage.cfg"

        fields
        (
            U
            {
                prime2Mean  yes;
            }

            p
            {
                prime2Mean  yes;
            }
        );
    }
2020-03-06 15:51:49 +00:00
fdbf3c134f Rationalized dictionary and configuration file headers 2018-07-09 15:40:05 +01:00
bf54ab67e1 Updated OpenFOAM Foundation web-link in headers 2018-07-06 21:42:54 +01:00
019ae8bab3 tutorials: Changed compressed ascii output to binary to improve IO performance
also rationalized the writeCompression specification
2018-06-27 15:25:52 +01:00
0335250577 tutorials: Removed temporary cellMap files 2018-05-31 16:49:29 +01:00
bf52a98e09 tutorials::Allrun: getApplication -> $(getApplication) 2018-05-28 22:20:07 +01:00
9221dd0d0f tutorials: Removed 0.orig directories in favor of <field>.orig
The new automated <field>.orig reading has made 0.orig directories and
associated scripting redundant.
2018-02-15 20:14:27 +00:00
10fb32db8d tutorials: Renamed sub-directories ras -> RAS and les -> LES 2016-09-20 19:03:40 +01:00
07ae9b67cc totalPressureFvPatchScalarField, uniformTotalPressureFvPatchScalarField: simplified and rationalized
The modes of operation are set by the dimensions of the pressure field
    to which this boundary condition is applied, the \c psi entry and the value
    of \c gamma:
    \table
        Mode                    | dimensions | psi   | gamma
        incompressible subsonic | p/rho      |       |
        compressible subsonic   | p          | none  |
        compressible transonic  | p          | psi   | 1
        compressible supersonic | p          | psi   | > 1
    \endtable

    For most applications the totalPressure boundary condition now only
    requires p0 to be specified e.g.
    outlet
    {
        type            totalPressure;
        p0              uniform 1e5;
    }
2016-06-16 12:21:34 +01:00
a1cc51b116 Tutorials fvSolution files: removed solver entries which use default
values; formatted Switch entries consistently across all cases
2016-06-15 07:39:37 +01:00
8b672f0f1a postProcessing: Replaced 'foamCalc' and the 'postCalc' utilities
with the more general and flexible 'postProcess' utility and '-postProcess' solver option

Rationale
---------

Both the 'postProcess' utility and '-postProcess' solver option use the
same extensive set of functionObjects available for data-processing
during the run avoiding the substantial code duplication necessary for
the 'foamCalc' and 'postCalc' utilities and simplifying maintenance.
Additionally consistency is guaranteed between solver data processing
and post-processing.

The functionObjects have been substantially re-written and generalized
to simplify development and encourage contribution.

Configuration
-------------

An extensive set of simple functionObject configuration files are
provided in

OpenFOAM-dev/etc/caseDicts/postProcessing

and more will be added in the future.  These can either be copied into
'<case>/system' directory and included into the 'controlDict.functions'
sub-dictionary or included directly from 'etc/caseDicts/postProcessing'
using the '#includeEtc' directive or the new and more convenient
'#includeFunc' directive which searches the
'<etc>/caseDicts/postProcessing' directories for the selected
functionObject, e.g.

functions
{
    #includeFunc Q
    #includeFunc Lambda2
}

'#includeFunc' first searches the '<case>/system' directory in case
there is a local configuration.

Description of #includeFunc
---------------------------

    Specify a functionObject dictionary file to include, expects the
    functionObject name to follow (without quotes).

    Search for functionObject dictionary file in
    user/group/shipped directories.
    The search scheme allows for version-specific and
    version-independent files using the following hierarchy:
    - \b user settings:
      - ~/.OpenFOAM/\<VERSION\>/caseDicts/postProcessing
      - ~/.OpenFOAM/caseDicts/postProcessing
    - \b group (site) settings (when $WM_PROJECT_SITE is set):
      - $WM_PROJECT_SITE/\<VERSION\>/caseDicts/postProcessing
      - $WM_PROJECT_SITE/caseDicts/postProcessing
    - \b group (site) settings (when $WM_PROJECT_SITE is not set):
      - $WM_PROJECT_INST_DIR/site/\<VERSION\>/caseDicts/postProcessing
      - $WM_PROJECT_INST_DIR/site/caseDicts/postProcessing
    - \b other (shipped) settings:
      - $WM_PROJECT_DIR/etc/caseDicts/postProcessing

    An example of the \c \#includeFunc directive:
    \verbatim
        #includeFunc <funcName>
    \endverbatim

postProcess
-----------

The 'postProcess' utility and '-postProcess' solver option provide the
same set of controls to execute functionObjects after the run either by
reading a specified set of fields to process in the case of
'postProcess' or by reading all fields and models required to start the
run in the case of '-postProcess' for each selected time:

postProcess -help

Usage: postProcess [OPTIONS]
options:
  -case <dir>       specify alternate case directory, default is the cwd
  -constant         include the 'constant/' dir in the times list
  -dict <file>      read control dictionary from specified location
  -field <name>     specify the name of the field to be processed, e.g. U
  -fields <list>    specify a list of fields to be processed, e.g. '(U T p)' -
                    regular expressions not currently supported
  -func <name>      specify the name of the functionObject to execute, e.g. Q
  -funcs <list>     specify the names of the functionObjects to execute, e.g.
                    '(Q div(U))'
  -latestTime       select the latest time
  -newTimes         select the new times
  -noFunctionObjects
                    do not execute functionObjects
  -noZero           exclude the '0/' dir from the times list, has precedence
                    over the -withZero option
  -parallel         run in parallel
  -region <name>    specify alternative mesh region
  -roots <(dir1 .. dirN)>
                    slave root directories for distributed running
  -time <ranges>    comma-separated time ranges - eg, ':10,20,40:70,1000:'
  -srcDoc           display source code in browser
  -doc              display application documentation in browser
  -help             print the usage

 pimpleFoam -postProcess -help

Usage: pimpleFoam [OPTIONS]
options:
  -case <dir>       specify alternate case directory, default is the cwd
  -constant         include the 'constant/' dir in the times list
  -dict <file>      read control dictionary from specified location
  -field <name>     specify the name of the field to be processed, e.g. U
  -fields <list>    specify a list of fields to be processed, e.g. '(U T p)' -
                    regular expressions not currently supported
  -func <name>      specify the name of the functionObject to execute, e.g. Q
  -funcs <list>     specify the names of the functionObjects to execute, e.g.
                    '(Q div(U))'
  -latestTime       select the latest time
  -newTimes         select the new times
  -noFunctionObjects
                    do not execute functionObjects
  -noZero           exclude the '0/' dir from the times list, has precedence
                    over the -withZero option
  -parallel         run in parallel
  -postProcess      Execute functionObjects only
  -region <name>    specify alternative mesh region
  -roots <(dir1 .. dirN)>
                    slave root directories for distributed running
  -time <ranges>    comma-separated time ranges - eg, ':10,20,40:70,1000:'
  -srcDoc           display source code in browser
  -doc              display application documentation in browser
  -help             print the usage

The functionObjects to execute may be specified on the command-line
using the '-func' option for a single functionObject or '-funcs' for a
list, e.g.

postProcess -func Q
postProcess -funcs '(div(U) div(phi))'

In the case of 'Q' the default field to process is 'U' which is
specified in and read from the configuration file but this may be
overridden thus:

postProcess -func 'Q(Ua)'

as is done in the example above to calculate the two forms of the divergence of
the velocity field.  Additional fields which the functionObjects may depend on
can be specified using the '-field' or '-fields' options.

The 'postProcess' utility can only be used to execute functionObjects which
process fields present in the time directories.  However, functionObjects which
depend on fields obtained from models, e.g. properties derived from turbulence
models can be executed using the '-postProcess' of the appropriate solver, e.g.

pisoFoam -postProcess -func PecletNo

or

sonicFoam -postProcess -func MachNo

In this case all required fields will have already been read so the '-field' or
'-fields' options are not be needed.

Henry G. Weller
CFD Direct Ltd.
2016-05-28 18:58:48 +01:00
e22c65dd8e Standardized the selection of required and optional fields in BCs, fvOptions, functionObjects etc.
In most boundary conditions, fvOptions etc. required and optional fields
to be looked-up from the objectRegistry are selected by setting the
keyword corresponding to the standard field name in the BC etc. to the
appropriate name in the objectRegistry.  Usually a default is provided
with sets the field name to the keyword name, e.g. in the
totalPressureFvPatchScalarField the velocity is selected by setting the
keyword 'U' to the appropriate name which defaults to 'U':

        Property     | Description             | Required    | Default value
        U            | velocity field name     | no          | U
        phi          | flux field name         | no          | phi
        .
        .
        .

However, in some BCs and functionObjects and many fvOptions another
convention is used in which the field name keyword is appended by 'Name'
e.g.

        Property     | Description             | Required    | Default value
        pName        | pressure field name     | no          | p
        UName        | velocity field name     | no          | U

This difference in convention is unnecessary and confusing, hinders code
and dictionary reuse and complicates code maintenance.  In this commit
the appended 'Name' is removed from the field selection keywords
standardizing OpenFOAM on the first convention above.
2016-05-21 20:28:20 +01:00
18725ed3ac functionObjects: Renamed dictionary entry 'functionObjectLibs' -> 'libs'
This changes simplifies the specification of functionObjects in
controlDict and is consistent with the 'libs' option in controlDict to
load special solver libraries.

Support for the old 'functionObjectLibs' name is supported for backward compatibility.
2016-05-16 22:09:01 +01:00
758dfc2c1f Standardized the naming of functions which control the writing of fields etc.
to have the prefix 'write' rather than 'output'

So outputTime() -> writeTime()

but 'outputTime()' is still supported for backward-compatibility.

Also removed the redundant secondary-writing functionality from Time
which has been superseded by the 'writeRegisteredObject' functionObject.
2016-05-12 17:38:01 +01:00
71290b4d9e functionObjects: Changed options 'outputControl' -> 'writeControl' and 'outputInterval' -> 'writeInterval'
for consistency with the time controls in controlDict and to avoid
unnecessary confusion.  All code and tutorials have been updated.

The old names 'outputControl' and 'outputInterval' are but supported for
backward compatibility but deprecated.
2016-05-12 11:38:11 +01:00
8cdd590333 tutorials: Renamed .org -> .orig
See http://www.openfoam.org/mantisbt/view.php?id=2076
  - .org is the file extension for emacs org-mode as well
  - .orig is more to the point (.org isn't always recognized as "original")
  - .original is too long, although more consistent with the convention
    of source code file naming

Update script contributed by Bruno Santos
2016-04-30 21:53:50 +01:00
fa0656c358 scripts: Reformat with consistent section separators 2016-02-15 18:30:24 +00:00
7c762bb90d foamRunTutorials: Rationalized support for the "-test" option
RunFunctions: Added "isTest()" argument parsing function
tutorials: Updated Allrun scripts to propagate the "-test" option
tutorials: Removed the lower Alltest scripts and updated the Allrun to
    use the "isTest()" function to handle test-specific operation
2016-02-15 15:49:05 +00:00
28006ee0a5 tutorials and templates: Updated wall BC for velocity to noSlip 2016-02-09 20:08:34 +00:00
20204cb468 bin/tools/RunFunctions: runParallel now obtains the number of processors from numberOfSubdomains
in decomposeParDict.

This default number of processors may be overridden by the new "-np"
option to runParallel which must be specified before the application
name e.g.:

runParallel -np 4 pisoFoam
2016-01-27 14:19:25 +00:00
2b1ee6b497 tutorials: Removed unnecessary spaces between parentheses and values in vectors 2015-07-21 20:55:44 +01:00
ecee2d275e Input of dimensionedScalars: update read-construction of dimensionedScalar in applications
so that the specification of the name and dimensions are optional in property dictionaries.

Update tutorials so that the name of the dimensionedScalar property is
no longer duplicated but optional dimensions are still provided and are
checked on read.
2015-07-20 22:52:53 +01:00
dc0523643f fluxRequired: Added setFluxRequired function to fvSchemes class
Added calls to setFluxRequired for p, p_rgh etc. in all solvers which
avoids the need to add fluxRequired entries in fvSchemes dictionaries.
2015-07-15 21:57:16 +01:00
3a3c29b284 blockMesh: Change default location of blockMeshDict from constant/polyMesh to system
For multi-region cases the default location of blockMeshDict is now system/<region name>

If the blockMeshDict is not found in system then the constant directory
is also checked providing backward-compatibility
2015-04-24 22:29:57 +01:00
6be514684a tutorials: rationalized log 2015-02-19 08:39:32 +00:00
93732c8af4 Updated the whole of OpenFOAM to use the new templated TurbulenceModels library
The old separate incompressible and compressible libraries have been removed.

Most of the commonly used RANS and LES models have been upgraded to the
new framework but there are a few missing which will be added over the
next few days, in particular the realizable k-epsilon model.  Some of
the less common incompressible RANS models have been introduced into the
new library instantiated for incompressible flow only.  If they prove to
be generally useful they can be templated for compressible and
multiphase application.

The Spalart-Allmaras DDES and IDDES models have been thoroughly
debugged, removing serious errors concerning the use of S rather than
Omega.

The compressible instances of the models have been augmented by a simple
backward-compatible eddyDiffusivity model for thermal transport based on
alphat and alphaEff.  This will be replaced with a separate run-time
selectable thermal transport model framework in a few weeks.

For simplicity and ease of maintenance and further development the
turbulent transport and wall modeling is based on nut/nuEff rather than
mut/muEff for compressible models so that all forms of turbulence models
can use the same wall-functions and other BCs.

All turbulence model selection made in the constant/turbulenceProperties
dictionary with RAS and LES as sub-dictionaries rather than in separate
files which added huge complexity for multiphase.

All tutorials have been updated so study the changes and update your own
cases by comparison with similar cases provided.

Sorry for the inconvenience in the break in backward-compatibility but
this update to the turbulence modeling is an essential step in the
future of OpenFOAM to allow more models to be added and maintained for a
wider range of cases and physics.  Over the next weeks and months more
turbulence models will be added of single and multiphase flow, more
additional sub-models and further development and testing of existing
models.  I hope this brings benefits to all OpenFOAM users.

Henry G. Weller
2015-01-21 19:21:39 +00:00
bb2c2efd49 wallDist: now a MeshObject cached and updated automatically with a run-time selected algorithm
When using models which require the wallDist e.g. kOmegaSST it will
request the method to be used from the wallDist sub-dictionary in
fvSchemes e.g.

wallDist
{
    method meshWave;
}

specifies the mesh-wave method as hard-coded in previous OpenFOAM versions.
2015-01-08 10:40:23 +00:00
195c566562 Minor change to comment 2014-12-14 21:50:14 +00:00
446e5777f0 Add the OpenFOAM source tree 2014-12-10 22:40:10 +00:00