When using 'simple' or 'hierarchical' decomposition it is useful to slightly rotate a
coordinate-aligned block-mesh to improve the processor boundaries by avoiding
irregular cell distribution at those boundaries. The degree of slight rotation
is controlled by the 'delta' coefficient and a value of 0.001 is generally
suitable so to avoid unnecessary clutter in 'decomposeParDict' 'delta' now
defaults to this value.
The FOAM file format has not changed from version 2.0 in many years and so there
is no longer a need for the 'version' entry in the FoamFile header to be
required and to reduce unnecessary clutter it is now optional, defaulting to the
current file format 2.0.
A new run-time selectable interface compression scheme framework has been added
to the two-phase VoF solvers to provide greater flexibility, extensibility and
more consistent user-interface. The previously built-in interface compression
is now in the standard run-time selectable surfaceInterpolationScheme
interfaceCompression:
Class
Foam::interfaceCompression
Description
Interface compression corrected scheme, based on counter-gradient
transport, to maintain sharp interfaces during VoF simulations.
The interface compression is applied to the face interpolated field from a
suitable 2nd-order shape-preserving NVD or TVD scheme, e.g. vanLeer or
vanAlbada. A coefficient is supplied to control the degree of compression,
with a value of 1 suitable for most VoF cases to ensure interface integrity.
A value larger than 1 can be used but the additional compression can bias
the interface to follow the mesh more closely while a value smaller than 1
can lead to interface smearing.
Example:
\verbatim
divSchemes
{
.
.
div(phi,alpha) Gauss interfaceCompression vanLeer 1;
.
.
}
\endverbatim
The separate scheme for the interface compression term "div(phirb,alpha)" is no
longer required or used nor is the compression coefficient cAlpha in fvSolution
as this is now part of the "div(phi,alpha)" scheme specification as shown above.
Backward-compatibility is provided by checking the specified "div(phi,alpha)"
scheme against the known interface compression schemes and if it is not one of
those the new interfaceCompression scheme is used with the cAlpha value
specified in fvSolution.
More details can be found here:
https://cfd.direct/openfoam/free-software/multiphase-interface-capturing
Henry G. Weller
CFD Direct Ltd.
Description
Reciprocal polynomial equation of state for liquids and solids
\f[
1/\rho = C_0 + C_1 T + C_2 T^2 - C_3 p - C_4 p T
\f]
This polynomial for the reciprocal of the density provides a much better fit
than the equivalent polynomial for the density and has the advantage that it
support coefficient mixing to support liquid and solid mixtures in an
efficient manner.
Usage
\table
Property | Description
C | Density polynomial coefficients
\endtable
Example of the specification of the equation of state for pure water:
\verbatim
equationOfState
{
C (0.001278 -2.1055e-06 3.9689e-09 4.3772e-13 -2.0225e-16);
}
\endverbatim
Note: This fit is based on the small amount of data which is freely
available for the range 20-65degC and 1-100bar.
This equation of state is a much better fit for water and other liquids than
perfectFluid and in general polynomials for the reciprocal of the density
converge much faster than polynomials of the density. Currently rPolynomial is
quadratic in the temperature and linear in the pressure which is sufficient for
modest ranges of pressure typically encountered in CFD but could be extended to
higher order in pressure and/temperature if necessary. The other huge advantage
in formulating the equation of state in terms of the reciprocal of the density
is that coefficient mixing is simple.
Given these advantages over the perfectFluid equation of state the libraries and
tutorial cases have all been updated to us rPolynomial rather than perfectFluid
for liquids and water in particular.
Now the interFoam and compressibleInterFoam families of solvers use the same
alphaEqn formulation and supporting all of the MULES options without
code-duplication.
The semi-implicit MULES support allows running with significantly larger
time-steps but this does reduce the interface sharpness.
For multi-region cases the default location of blockMeshDict is now system/<region name>
If the blockMeshDict is not found in system then the constant directory
is also checked providing backward-compatibility
The old separate incompressible and compressible libraries have been removed.
Most of the commonly used RANS and LES models have been upgraded to the
new framework but there are a few missing which will be added over the
next few days, in particular the realizable k-epsilon model. Some of
the less common incompressible RANS models have been introduced into the
new library instantiated for incompressible flow only. If they prove to
be generally useful they can be templated for compressible and
multiphase application.
The Spalart-Allmaras DDES and IDDES models have been thoroughly
debugged, removing serious errors concerning the use of S rather than
Omega.
The compressible instances of the models have been augmented by a simple
backward-compatible eddyDiffusivity model for thermal transport based on
alphat and alphaEff. This will be replaced with a separate run-time
selectable thermal transport model framework in a few weeks.
For simplicity and ease of maintenance and further development the
turbulent transport and wall modeling is based on nut/nuEff rather than
mut/muEff for compressible models so that all forms of turbulence models
can use the same wall-functions and other BCs.
All turbulence model selection made in the constant/turbulenceProperties
dictionary with RAS and LES as sub-dictionaries rather than in separate
files which added huge complexity for multiphase.
All tutorials have been updated so study the changes and update your own
cases by comparison with similar cases provided.
Sorry for the inconvenience in the break in backward-compatibility but
this update to the turbulence modeling is an essential step in the
future of OpenFOAM to allow more models to be added and maintained for a
wider range of cases and physics. Over the next weeks and months more
turbulence models will be added of single and multiphase flow, more
additional sub-models and further development and testing of existing
models. I hope this brings benefits to all OpenFOAM users.
Henry G. Weller