Commit Graph

19 Commits

Author SHA1 Message Date
9c73d4d206 decomposeParDict: The 'delta' entry for geometric decomposition is no option and defaults to 0.001
When using 'simple' or 'hierarchical' decomposition it is useful to slightly rotate a
coordinate-aligned block-mesh to improve the processor boundaries by avoiding
irregular cell distribution at those boundaries.  The degree of slight rotation
is controlled by the 'delta' coefficient and a value of 0.001 is generally
suitable so to avoid unnecessary clutter in 'decomposeParDict' 'delta' now
defaults to this value.
2021-06-24 10:18:20 +01:00
01494463d0 FoamFile: 'version' entry is now optional, defaulting to 2.0
The FOAM file format has not changed from version 2.0 in many years and so there
is no longer a need for the 'version' entry in the FoamFile header to be
required and to reduce unnecessary clutter it is now optional, defaulting to the
current file format 2.0.
2021-06-23 20:50:10 +01:00
8fa6bfcded compressibleInterFoam: Updated to use the thermo:rho 2020-10-01 10:44:36 +01:00
fa79bab863 interfaceCompression: New run-time selectable VoF interface compression scheme
A new run-time selectable interface compression scheme framework has been added
to the two-phase VoF solvers to provide greater flexibility, extensibility and
more consistent user-interface.  The previously built-in interface compression
is now in the standard run-time selectable surfaceInterpolationScheme
interfaceCompression:

Class
    Foam::interfaceCompression

Description
    Interface compression corrected scheme, based on counter-gradient
    transport, to maintain sharp interfaces during VoF simulations.

    The interface compression is applied to the face interpolated field from a
    suitable 2nd-order shape-preserving NVD or TVD scheme, e.g.  vanLeer or
    vanAlbada.  A coefficient is supplied to control the degree of compression,
    with a value of 1 suitable for most VoF cases to ensure interface integrity.
    A value larger than 1 can be used but the additional compression can bias
    the interface to follow the mesh more closely while a value smaller than 1
    can lead to interface smearing.

    Example:
    \verbatim
    divSchemes
    {
        .
        .
        div(phi,alpha)     Gauss interfaceCompression vanLeer 1;
        .
        .
    }
    \endverbatim

The separate scheme for the interface compression term "div(phirb,alpha)" is no
longer required or used nor is the compression coefficient cAlpha in fvSolution
as this is now part of the "div(phi,alpha)" scheme specification as shown above.

Backward-compatibility is provided by checking the specified "div(phi,alpha)"
scheme against the known interface compression schemes and if it is not one of
those the new interfaceCompression scheme is used with the cAlpha value
specified in fvSolution.

More details can be found here:
https://cfd.direct/openfoam/free-software/multiphase-interface-capturing

Henry G. Weller
CFD Direct Ltd.
2020-07-02 10:13:15 +01:00
4817971e13 rPolynomial: New equation of state for liquids and solids
Description
    Reciprocal polynomial equation of state for liquids and solids

    \f[
        1/\rho = C_0 + C_1 T + C_2 T^2 - C_3 p - C_4 p T
    \f]

    This polynomial for the reciprocal of the density provides a much better fit
    than the equivalent polynomial for the density and has the advantage that it
    support coefficient mixing to support liquid and solid mixtures in an
    efficient manner.

Usage
    \table
        Property     | Description
        C            | Density polynomial coefficients
    \endtable

    Example of the specification of the equation of state for pure water:
    \verbatim
    equationOfState
    {
        C (0.001278 -2.1055e-06 3.9689e-09 4.3772e-13 -2.0225e-16);
    }
    \endverbatim
    Note: This fit is based on the small amount of data which is freely
    available for the range 20-65degC and 1-100bar.

This equation of state is a much better fit for water and other liquids than
perfectFluid and in general polynomials for the reciprocal of the density
converge much faster than polynomials of the density.  Currently rPolynomial is
quadratic in the temperature and linear in the pressure which is sufficient for
modest ranges of pressure typically encountered in CFD but could be extended to
higher order in pressure and/temperature if necessary.  The other huge advantage
in formulating the equation of state in terms of the reciprocal of the density
is that coefficient mixing is simple.

Given these advantages over the perfectFluid equation of state the libraries and
tutorial cases have all been updated to us rPolynomial rather than perfectFluid
for liquids and water in particular.
2019-08-31 11:57:17 +01:00
29fc94d3e2 Merge branch 'master' of github.com-OpenFOAM:OpenFOAM/OpenFOAM-dev into mergeDyM 2018-07-10 20:10:01 +01:00
fdbf3c134f Rationalized dictionary and configuration file headers 2018-07-09 15:40:05 +01:00
bf54ab67e1 Updated OpenFOAM Foundation web-link in headers 2018-07-06 21:42:54 +01:00
038d85d713 compressibleInterFoam: Merged with compressibleInterDyMFoam
compressibleInterFoam can now run with static or dynamic meshes selected in the
constant/dynamicMeshDict dictionary.
2018-06-05 11:14:17 +01:00
9221dd0d0f tutorials: Removed 0.orig directories in favor of <field>.orig
The new automated <field>.orig reading has made 0.orig directories and
associated scripting redundant.
2018-02-15 20:14:27 +00:00
e8daaa5c76 compressibleInterFoam: Improved mass conservation
using the continuity error correction formulation developed for
twoPhaseEulerFoam and reactingEulerFoam.
2017-06-22 14:42:36 +01:00
0ba6179f23 tutorials: Updated pcorr settings in fvSolution to provide pcorrFinal if required 2017-03-07 11:48:20 +00:00
1c8a0bdcb3 compressibleInterFoam: Completed LTS and semi-implicit MULES support
Now the interFoam and compressibleInterFoam families of solvers use the same
alphaEqn formulation and supporting all of the MULES options without
code-duplication.

The semi-implicit MULES support allows running with significantly larger
time-steps but this does reduce the interface sharpness.
2017-02-09 17:31:57 +00:00
a1cc51b116 Tutorials fvSolution files: removed solver entries which use default
values; formatted Switch entries consistently across all cases
2016-06-15 07:39:37 +01:00
2b1ee6b497 tutorials: Removed unnecessary spaces between parentheses and values in vectors 2015-07-21 20:55:44 +01:00
dc0523643f fluxRequired: Added setFluxRequired function to fvSchemes class
Added calls to setFluxRequired for p, p_rgh etc. in all solvers which
avoids the need to add fluxRequired entries in fvSchemes dictionaries.
2015-07-15 21:57:16 +01:00
3a3c29b284 blockMesh: Change default location of blockMeshDict from constant/polyMesh to system
For multi-region cases the default location of blockMeshDict is now system/<region name>

If the blockMeshDict is not found in system then the constant directory
is also checked providing backward-compatibility
2015-04-24 22:29:57 +01:00
93732c8af4 Updated the whole of OpenFOAM to use the new templated TurbulenceModels library
The old separate incompressible and compressible libraries have been removed.

Most of the commonly used RANS and LES models have been upgraded to the
new framework but there are a few missing which will be added over the
next few days, in particular the realizable k-epsilon model.  Some of
the less common incompressible RANS models have been introduced into the
new library instantiated for incompressible flow only.  If they prove to
be generally useful they can be templated for compressible and
multiphase application.

The Spalart-Allmaras DDES and IDDES models have been thoroughly
debugged, removing serious errors concerning the use of S rather than
Omega.

The compressible instances of the models have been augmented by a simple
backward-compatible eddyDiffusivity model for thermal transport based on
alphat and alphaEff.  This will be replaced with a separate run-time
selectable thermal transport model framework in a few weeks.

For simplicity and ease of maintenance and further development the
turbulent transport and wall modeling is based on nut/nuEff rather than
mut/muEff for compressible models so that all forms of turbulence models
can use the same wall-functions and other BCs.

All turbulence model selection made in the constant/turbulenceProperties
dictionary with RAS and LES as sub-dictionaries rather than in separate
files which added huge complexity for multiphase.

All tutorials have been updated so study the changes and update your own
cases by comparison with similar cases provided.

Sorry for the inconvenience in the break in backward-compatibility but
this update to the turbulence modeling is an essential step in the
future of OpenFOAM to allow more models to be added and maintained for a
wider range of cases and physics.  Over the next weeks and months more
turbulence models will be added of single and multiphase flow, more
additional sub-models and further development and testing of existing
models.  I hope this brings benefits to all OpenFOAM users.

Henry G. Weller
2015-01-21 19:21:39 +00:00
446e5777f0 Add the OpenFOAM source tree 2014-12-10 22:40:10 +00:00