Commit Graph

114 Commits

Author SHA1 Message Date
87855d849e tutorials/multiphase/interFoam/RAS/floatingObject: Added controlDict.sixDoF
to be used with dynamicMeshDict.sixDoF to test the deprecated
sixDoFRigidBodyMotion motion solver.
2022-03-19 09:54:13 +00:00
0f88d03f5a tutorials/multiphase/interFoam/RAS/planingHullW3/Allmesh.*: Remove sets after refinement
otherwise renumberMesh fails due to the refinement sets being inconsistent with
the final mesh.
2022-03-16 10:43:27 +00:00
a08bb7bae1 meshQualityDict: Switch off the minVol control by default
It is not clear for what cases the minVol control is useful or necessary and for
some cases it causes problems with snapping and layer addition if not set to a
sufficiently small value.
2022-03-15 14:50:12 +00:00
bbaba1a645 topoSetDict: Corrected/updated formatting
Patch contributed by Institute of Fluid Dynamics, Helmholtz-Zentrum
Dresden - Rossendorf (HZDR)
2022-03-14 13:49:07 +00:00
16788ffc36 fvMeshDistributorsDistributor: Changed decompose call to support constraints
Resolves bug-report https://bugs.openfoam.org/view.php?id=3812
2022-03-04 18:34:32 +00:00
99cfbd818f blockMesh: Added warning to set defaultPatch appropriately for snappyHexMesh and 2D cases
The defaultPatch type currently defaults to empty which is appropriate for 1D
and 2D cases but not when creating the initial blockMesh for snappyHexMesh as
the presence of empty patches triggers the inappropriate application of 2D point
constraint corrections following snapping and morphing.  To avoid this hidden
problem a warning is now generated from blockMesh when the defaultPatch is not
explicitly set for cases which generate a default patch, i.e. for which the
boundary is not entirely defined.  e.g.

.
.
.
Creating block mesh topology

--> FOAM FATAL IO ERROR:
The 'defaultPatch' type must be specified for the 'defaultFaces' patch, e.g. for snappyHexMesh

    defaultPatch
    {
        name default; // optional
        type patch;
    }

or for 2D meshes

    defaultPatch
    {
        name frontAndBack; // optional
        type empty;
    }
.
.
.

All the tutorials have been update to include the defaultPatch specification as
appropriate.
2022-02-24 21:35:09 +00:00
32e7b52c81 motionSmootherAlgoCheck::checkMesh: improved minVol test and removed unused tests
motionSmootherAlgoCheck::checkMesh is used by snappyHexMesh to check the mesh
after snapping and morphing.  The minVol test which checks for collapsed cells
is now relative to the cube of the minimum bounding box length so that it is
less dependent on the size of the geometry and less likely to need changing for
very small geometries.

The default value is set in
etc/caseDicts/mesh/generation/meshQualityDict
etc/caseDicts/mesh/generation/meshQualityDict.cfg

//- Minimum cell pyramid volume relative to min bounding box length^3
//  Set to a fraction of the smallest cell volume expected.
//  Set to very negative number (e.g. -1e30) to disable.
minVol 1e-10;

The unused minArea and minTriangleTwist tests have been removed
2022-02-24 16:44:34 +00:00
fec6837f8f tutorials/multiphase: totalPressure -> prghTotalPressure
For most multiphase flows it is more appropriate to evaluate the total pressure
from the static pressure obtained from p_rgh rather than from p_rgh directly.
2022-02-07 12:32:20 +00:00
6d91cb289c tutorials::counterFlowFlame2D_GRI, floatingObject: Added -cellDist
to write the cellDist processor distribution files for
decomposition/redistribution post-processing and diagnostics.
2022-02-01 11:33:02 +00:00
360fd3f804 tutorials/multiphase/interFoam/RAS/DTCHull: Improved LTS settings
Following a rationalisation of the Courant number used to set the LTS time-step
the LTS settings needed to be changed to improve convergence.
2022-01-29 09:10:39 +00:00
8bb48df87f flowRateInletVelocityFvPatchVectorField: Added optional profile entry to specify the velocity profile
The unreliable extrapolateProfile option has been replaced by the more flexible
and reliable profile option which allows the velocity profile to be specified as
a Function1 of the normalised distance to the wall.  To simplify the
specification of the most common velocity profiles the new laminarBL (quadratic
profile) and turbulentBL (1/7th power law) Function1s are provided.

In addition to the new profile option the flow rate can now be specified as a
meanVelocity, volumetricFlowRate or massFlowRate, all of which are Function1s of
time.

The following tutorials have been updated to use the laminarBL profile:
    multiphase/multiphaseEulerFoam/laminar/titaniaSynthesis
    multiphase/multiphaseEulerFoam/laminar/titaniaSynthesisSurface

The following tutorials have been updated to use the turbulentBL profile:
    combustion/reactingFoam/Lagrangian/verticalChannel
    combustion/reactingFoam/Lagrangian/verticalChannelLTS
    combustion/reactingFoam/Lagrangian/verticalChannelSteady
    compressible/rhoPimpleFoam/RAS/angledDuct
    compressible/rhoPimpleFoam/RAS/angledDuctLTS
    compressible/rhoPimpleFoam/RAS/squareBendLiq
    compressible/rhoPorousSimpleFoam/angledDuctImplicit
    compressible/rhoSimpleFoam/angledDuctExplicitFixedCoeff
    compressible/rhoSimpleFoam/squareBend
    compressible/rhoSimpleFoam/squareBendLiq
    heatTransfer/chtMultiRegionFoam/shellAndTubeHeatExchanger
    heatTransfer/chtMultiRegionFoam/shellAndTubeHeatExchanger
    incompressible/porousSimpleFoam/angledDuctImplicit
    incompressible/porousSimpleFoam/straightDuctImplicit
    multiphase/interFoam/RAS/angledDuct

Class
    Foam::flowRateInletVelocityFvPatchVectorField

Description
    Velocity inlet boundary condition creating a velocity field with
    optionally specified profile normal to the patch adjusted to match the
    specified mass flow rate, volumetric flow rate or mean velocity.

    For a mass-based flux:
    - the flow rate should be provided in kg/s
    - if \c rho is "none" the flow rate is in m3/s
    - otherwise \c rho should correspond to the name of the density field
    - if the density field cannot be found in the database, the user must
      specify the inlet density using the \c rhoInlet entry

    For a volumetric-based flux:
    - the flow rate is in m3/s

Usage
    \table
        Property     | Description             | Required    | Default value
        massFlowRate | Mass flow rate [kg/s]   | no          |
        volumetricFlowRate | Volumetric flow rate [m^3/s]| no |
        meanVelocity | Mean velocity [m/s]| no |
        profile      | Velocity profile        | no          |
        rho          | Density field name      | no          | rho
        rhoInlet     | Inlet density           | no          |
        alpha        | Volume fraction field name | no       |
    \endtable

    Example of the boundary condition specification for a volumetric flow rate:
    \verbatim
    <patchName>
    {
        type                flowRateInletVelocity;
        volumetricFlowRate  0.2;
        profile             laminarBL;
    }
    \endverbatim

    Example of the boundary condition specification for a mass flow rate:
     \verbatim
    <patchName>
    {
        type                flowRateInletVelocity;
        massFlowRate        0.2;
        profile             turbulentBL;
        rho                 rho;
        rhoInlet            1.0;
    }
    \endverbatim

    Example of the boundary condition specification for a volumetric flow rate:
    \verbatim
    <patchName>
    {
        type                flowRateInletVelocity;
        meanVelocity        5;
        profile             turbulentBL;
    }
    \endverbatim

    The \c volumetricFlowRate, \c massFlowRate or \c meanVelocity entries are
    \c Function1 of time, see Foam::Function1s.

    The \c profile entry is a \c Function1 of the normalised distance to the
    wall.  Any suitable Foam::Function1s can be used including
    Foam::Function1s::codedFunction1 but Foam::Function1s::laminarBL and
    Foam::Function1s::turbulentBL have been created specifically for this
    purpose and are likely to be appropriate for most cases.

Note
    - \c rhoInlet is required for the case of a mass flow rate, where the
      density field is not available at start-up
    - The value is positive into the domain (as an inlet)
    - May not work correctly for transonic inlets
    - Strange behaviour with potentialFoam since the U equation is not solved

See also
    Foam::fixedValueFvPatchField
    Foam::Function1s::laminarBL
    Foam::Function1s::turbulentBL
    Foam::Function1s
    Foam::flowRateOutletVelocityFvPatchVectorField
2022-01-24 19:10:39 +00:00
3c353761ed tutorials::dynamicMeshDict: Corrected dictionary name 2022-01-17 10:54:11 +00:00
ef9707eaa7 tutorials/multiphase/interFoam/RAS/waterChannel: Now calculates the volumetric flux of the water
Resolves bug-report https://bugs.openfoam.org/view.php?id=3774
2022-01-05 19:02:22 +00:00
340856ad38 zoltanDecomp: New parallel decomposition/redistribution method using the Zoltan library
Zoltan only work in parallel so zoltanDecomp can only be used for redistribution
but is much more flexible than ptscotch and provides a range of geometric, graph
and hypergraph methods which can operate in either "partition" or "repartition",
the latter being particularly useful for dynamic load-balancing by migrating
cells between processors rather than creating a completely different
decomposition, thus reducing communication.

Class
    Foam::zoltanDecomp

Description
    Zoltan redistribution in parallel

    Note: Zoltan methods do not support serial operation.

    Parameters
    - lb_method : The load-balancing algorithm
      - block : block partitioning
      - random : random partitioning
      - rcb : recursive coordinate bisection
      - rib : ecursive inertial bisection
      - hsfc : Hilbert space-filling curve partitioning
      - reftree : refinement tree based partitioning
      - graph : choose from collection of methods for graphs
      - hypergraph : choose from a collection of methods for hypergraphs

    - lb_approach The desired load balancing approach. Only lb_method =
      hypergraph or graph uses the lb_approach parameter. Valid values are

      - partition : Partition without reference to the current distribution,
        recommended for static load balancing.

      - repartition : Partition starting from the current data distribution
        to keep data migration low, recommended for dynamic load balancing.

      - refine : Quickly improve the current data distribution

      Default values
      - debug_level     0
      - imbalance_tol   1.05
      - lb_method       graph
      - lb_approach     repartition

Usage
    To select the Zoltan graph repartition method add the following entries to
    decomposeParDict:

        distributor     zoltan;
        libs            ("libzoltanRenumber.so");

    The Zoltan lb_method and lb_approach can be changed by adding the
    corresponding entries to the optional zoltanCeoffs sub-dictionary, e.g.:

    zoltanCoeffs
    {
        lb_method       hypergraph;
        lb_approach     partition;
    }

An example of using Zoltan for redistribution during snappyHexMesh is provided
commented out in

tutorials/incompressible/simpleFoam/motorBike/system/decomposeParDict

and fordynamic load-balancing in

tutorials/multiphase/interFoam/RAS/floatingObject/system/decomposeParDict.

Note that Zoltan must first be compiled in ThirdParty-dev by downloading from
the link in the README file and running Allwmake and then compiling zoltanDecomp
by running Allwmake in src/parallel/decompose.
2021-12-25 11:04:47 +00:00
f97f6326f0 Decomposition/redistribution: Separated choice of mesh decomposition and redistribution methods
When snappyHexMesh is run in parallel it re-balances the mesh during refinement
and layer addition by redistribution which requires a decomposition method
that operates in parallel, e.g. hierachical or ptscotch.  decomposePar uses a
decomposition method which operates in serial e.g. hierachical but NOT
ptscotch.  In order to run decomposePar followed by snappyHexMesh in parallel it
has been necessary to change the method specified in decomposeParDict but now
this is avoided by separately specifying the decomposition and distribution
methods, e.g. in the incompressible/simpleFoam/motorBike case:

numberOfSubdomains  6;

decomposer      hierarchical;
distributor     ptscotch;

hierarchicalCoeffs
{
    n               (3 2 1);
    order           xyz;
}

The distributor entry is also used for run-time mesh redistribution, e.g. in the
multiphase/interFoam/RAS/floatingObject case re-distribution for load-balancing
is enabled in constant/dynamicMeshDict:

distributor
{
    type            distributor;

    libs            ("libfvMeshDistributors.so");

    redistributionInterval  10;
}

which uses the distributor specified in system/decomposeParDict:

distributor     hierarchical;

This rationalisation provides the structure for development of mesh
redistribution and load-balancing.
2021-12-15 22:12:00 +00:00
bf5f056296 fvMeshDistributors: New library for mesh redistribution and load-balancing
Basic support is now provided for dynamic mesh redistribution, particularly for
load-balancing.  The mesh distributor is selected in the optional 'distributor'
entry in dynamicMeshDict, for example in the
multiphase/interFoam/RAS/floatingObject tutorial case when run in parallel using
the new Allrun-parallel script

distributor
{
    type            decomposer;

    libs            ("libfvMeshDistributors.so");

    redistributionInterval  10;
}

in which the 'decomposer' form of redistribution is selected to call the mesh
decomposition method specified in decomposeParDict to re-decompose the mesh for
redistribution.  The redistributionInterval entry specifies how frequently mesh
redistribution takes place, in the above every 10th time-step.  An optional
maxImbalance entry is also provided to control redistribution based on the cell
distribution imbalance:

Class
    Foam::fvMeshDistributor::decomposer

Description
    Dynamic mesh redistribution using the decomposer

Usage
    Example of single field based refinement in all cells:
    \verbatim
    distributor
    {
        type            decomposer;

        libs            ("libfvMeshDistributors.so");

        // How often to redistribute
        redistributionInterval  10;

        // Maximum fractional cell distribution imbalance
        // before rebalancing
        maxImbalance    0.1;
    }
    \endverbatim

Currently mesh refinement/unrefinement and motion with redistribution is
supported but many aspects of OpenFOAM are not yet and will require further
development, in particular fvModels and Lagrangian.

Also only the geometry-based simple and hierarchical decomposition method are
well behaved for redistribution, scotch and ptScotch cause dramatic changes in
mesh distribution with a corresponding heavy communications overhead limiting
their usefulness or at least the frequency with which they should be called to
redistribute the mesh.
2021-12-09 14:06:45 +00:00
7dfb7146ea tutorials::blockMeshDict: Removed redundant mergePatchPairs and edges entries 2021-12-08 13:02:40 +00:00
494e440ad4 fvMeshTopoChangers::refiner: Added mapping of Uf for new faces
The surfaceVectorField Uf is used instead of the flux field phi for ddtPhiCorr
in moving mesh cases to handle linear and rotating motion and must mapped from
the volVectorField U to new faces created by cell splitting or merging in mesh
refinement/unrefinement.
2021-11-11 15:11:52 +00:00
30a16cc88c tutorials/multiphase/interFoam/RAS/floatingObject: Improved surface initialisation 2021-11-02 17:40:09 +00:00
37c7d6b9ac rigidBodyMeshMotion: Added support for dynamic mesh refinement/unrefinement
The floatingObject tutorial has been update to demonstrate this functionality by
adding the following topoChanger entry to dynamicMeshDict:

topoChanger
{
    type    refiner;

    libs    ("libfvMeshTopoChangers.so");

    // How often to refine
    refineInterval  1;

    // Field to be refinement on
    field           alpha.water;

    // Refine field in between lower..upper
    lowerRefineLevel 0.001;
    upperRefineLevel 0.999;

    // Have slower than 2:1 refinement
    nBufferLayers   1;

    // Refine cells only up to maxRefinement levels
    maxRefinement   1;

    // Stop refinement if maxCells reached
    maxCells        200000;

    // Flux field and corresponding velocity field. Fluxes on changed
    // faces get recalculated by interpolating the velocity. Use 'none'
    // on surfaceScalarFields that do not need to be reinterpolated.
    correctFluxes
    (
        (phi none)
        (nHatf none)
        (rhoPhi none)
        (alphaPhi.water none)
        (meshPhi none)
        (ghf none)
    );

    // Write the refinement level as a volScalarField
    dumpLevel       true;
}

Note that currently only single rigid body motion is supported (but multi-body
support will be added shortly) and the Crank-Nicolson scheme is not supported.
2021-11-02 14:11:52 +00:00
cf3d6cd1e9 fvMeshMovers, fvMeshTopoChangers: General mesh motion and topology change replacement for dynamicFvMesh
Mesh motion and topology change are now combinable run-time selectable options
within fvMesh, replacing the restrictive dynamicFvMesh which supported only
motion OR topology change.

All solvers which instantiated a dynamicFvMesh now instantiate an fvMesh which
reads the optional constant/dynamicFvMeshDict to construct an fvMeshMover and/or
an fvMeshTopoChanger.  These two are specified within the optional mover and
topoChanger sub-dictionaries of dynamicFvMeshDict.

When the fvMesh is updated the fvMeshTopoChanger is first executed which can
change the mesh topology in anyway, adding or removing points as required, for
example for automatic mesh refinement/unrefinement, and all registered fields
are mapped onto the updated mesh.  The fvMeshMover is then executed which moved
the points only and calculates the cell volume change and corresponding
mesh-fluxes for conservative moving mesh transport.  If multiple topological
changes or movements are required these would be combined into special
fvMeshMovers and fvMeshTopoChangers which handle the processing of a list of
changes, e.g. solidBodyMotionFunctions:multiMotion.

The tutorials/multiphase/interFoam/laminar/sloshingTank3D3DoF case has been
updated to demonstrate this new functionality by combining solid-body motion
with mesh refinement/unrefinement:

/*--------------------------------*- C++ -*----------------------------------*\
  =========                 |
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox
   \\    /   O peration     | Website:  https://openfoam.org
    \\  /    A nd           | Version:  dev
     \\/     M anipulation  |
\*---------------------------------------------------------------------------*/
FoamFile
{
    format      ascii;
    class       dictionary;
    location    "constant";
    object      dynamicMeshDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

mover
{
    type    motionSolver;

    libs    ("libfvMeshMovers.so" "libfvMotionSolvers.so");

    motionSolver    solidBody;

    solidBodyMotionFunction SDA;

    CofG            (0 0 0);
    lamda           50;
    rollAmax        0.2;
    rollAmin        0.1;
    heaveA          4;
    swayA           2.4;
    Q               2;
    Tp              14;
    Tpn             12;
    dTi             0.06;
    dTp             -0.001;
}

topoChanger
{
    type    refiner;

    libs    ("libfvMeshTopoChangers.so");

    // How often to refine
    refineInterval  1;

    // Field to be refinement on
    field           alpha.water;

    // Refine field in between lower..upper
    lowerRefineLevel 0.001;
    upperRefineLevel 0.999;

    // Have slower than 2:1 refinement
    nBufferLayers   1;

    // Refine cells only up to maxRefinement levels
    maxRefinement   1;

    // Stop refinement if maxCells reached
    maxCells        200000;

    // Flux field and corresponding velocity field. Fluxes on changed
    // faces get recalculated by interpolating the velocity. Use 'none'
    // on surfaceScalarFields that do not need to be reinterpolated.
    correctFluxes
    (
        (phi none)
        (nHatf none)
        (rhoPhi none)
        (alphaPhi.water none)
        (meshPhi none)
        (meshPhi_0 none)
        (ghf none)
    );

    // Write the refinement level as a volScalarField
    dumpLevel       true;
}

// ************************************************************************* //

Note that currently this is the only working combination of mesh-motion with
topology change within the new framework and further development is required to
update the set of topology changers so that topology changes with mapping are
separated from the mesh-motion so that they can be combined with any of the
other movements or topology changes in any manner.

All of the solvers and tutorials have been updated to use the new form of
dynamicMeshDict but backward-compatibility was not practical due to the complete
reorganisation of the mesh change structure.
2021-10-01 15:50:06 +01:00
167ad7442c snappyHexMesh: Renamed locationInMesh -> insidePoint
for consistency with the regionToCell topo set source and splitMeshRegions and
provides more logical extension to the multiple and outside point variants insidePoints,
outsidePoint and outsidePoints.
2021-09-28 16:40:44 +01:00
c4187efc28 tutorials: DTCHullWave: Increase upstream mesh density
The mesh in the upstream region of this case has been refined back to
its original density. This restores the wave propagation behaviour
through this region.
2021-09-01 10:56:47 +01:00
65ef2cf331 physicalProperties: Standardised incompressible and compressible solver fluid properties
to provide a single consistent code and user interface to the specification of
physical properties in both single-phase and multi-phase solvers.  This redesign
simplifies usage and reduces code duplication in run-time selectable solver
options such as 'functionObjects' and 'fvModels'.

* physicalProperties
  Single abstract base-class for all fluid and solid physical property classes.

  Physical properties for a single fluid or solid within a region are now read
  from the 'constant/<region>/physicalProperties' dictionary.

  Physical properties for a phase fluid or solid within a region are now read
  from the 'constant/<region>/physicalProperties.<phase>' dictionary.

  This replaces the previous inconsistent naming convention of
  'transportProperties' for incompressible solvers and
  'thermophysicalProperties' for compressible solvers.

  Backward-compatibility is provided by the solvers reading
  'thermophysicalProperties' or 'transportProperties' if the
  'physicalProperties' dictionary does not exist.

* phaseProperties
  All multi-phase solvers (VoF and Euler-Euler) now read the list of phases and
  interfacial models and coefficients from the
  'constant/<region>/phaseProperties' dictionary.

  Backward-compatibility is provided by the solvers reading
  'thermophysicalProperties' or 'transportProperties' if the 'phaseProperties'
  dictionary does not exist.  For incompressible VoF solvers the
  'transportProperties' is automatically upgraded to 'phaseProperties' and the
  two 'physicalProperties.<phase>' dictionary for the phase properties.

* viscosity
  Abstract base-class (interface) for all fluids.

  Having a single interface for the viscosity of all types of fluids facilitated
  a substantial simplification of the 'momentumTransport' library, avoiding the
  need for a layer of templating and providing total consistency between
  incompressible/compressible and single-phase/multi-phase laminar, RAS and LES
  momentum transport models.  This allows the generalised Newtonian viscosity
  models to be used in the same form within laminar as well as RAS and LES
  momentum transport closures in any solver.  Strain-rate dependent viscosity
  modelling is particularly useful with low-Reynolds number turbulence closures
  for non-Newtonian fluids where the effect of bulk shear near the walls on the
  viscosity is a dominant effect.  Within this framework it would also be
  possible to implement generalised Newtonian models dependent on turbulent as
  well as mean strain-rate if suitable model formulations are available.

* visosityModel
  Run-time selectable Newtonian viscosity model for incompressible fluids
  providing the 'viscosity' interface for 'momentumTransport' models.

  Currently a 'constant' Newtonian viscosity model is provided but the structure
  supports more complex functions of time, space and fields registered to the
  region database.

  Strain-rate dependent non-Newtonian viscosity models have been removed from
  this level and handled in a more general way within the 'momentumTransport'
  library, see section 'viscosity' above.

  The 'constant' viscosity model is selected in the 'physicalProperties'
  dictionary by

      viscosityModel  constant;

  which is equivalent to the previous entry in the 'transportProperties'
  dictionary

      transportModel  Newtonian;

  but backward-compatibility is provided for both the keyword and model
  type.

* thermophysicalModels
  To avoid propagating the unnecessary constructors from 'dictionary' into the
  new 'physicalProperties' abstract base-class this entire structure has been
  removed from the 'thermophysicalModels' library.  The only use for this
  constructor was in 'thermalBaffle' which now reads the 'physicalProperties'
  dictionary from the baffle region directory which is far simpler and more
  consistent and significantly reduces the amount of constructor code in the
  'thermophysicalModels' library.

* compressibleInterFoam
  The creation of the 'viscosity' interface for the 'momentumTransport' models
  allows the complex 'twoPhaseMixtureThermo' derived from 'rhoThermo' to be
  replaced with the much simpler 'compressibleTwoPhaseMixture' derived from the
  'viscosity' interface, avoiding the myriad of unused thermodynamic functions
  required by 'rhoThermo' to be defined for the mixture.

  Same for 'compressibleMultiphaseMixture' in 'compressibleMultiphaseInterFoam'.

This is a significant improvement in code and input consistency, simplifying
maintenance and further development as well as enhancing usability.

Henry G. Weller
CFD Direct Ltd.
2021-07-30 17:19:54 +01:00
15a27fee87 topoSet: the sourceInfo sub-dictionary of the topoSetDict actions is now optional
and only needed if there is a name clash between entries in the source
specification and the set specification, e.g. "name":

    {
        name    rotorCells;
        type    cellSet;
        action  new;
        source  zoneToCell;
        sourceInfo
        {
            name    cylinder;
        }
    }
2021-07-27 14:07:37 +01:00
cfd11c035b createBafflesDict: removed matchTolerance entries since they default to 1e-4 2021-07-08 12:14:00 +01:00
78977d3259 systemDict: Added support for system as the default directory for the -dict option
With this change both

    blockMesh -dict fineBlockMeshDict
    blockMesh -dict system/fineBlockMeshDict

are supported, if the system/ path is not specified it is assumed
2021-07-02 21:05:47 +01:00
45a0059026 splitBaffles, mergeBaffles: New utilities to replace mergeOrSplitBaffles
splitBaffles identifies baffle faces; i.e., faces on the mesh boundary
which share the exact same set of points as another boundary face. It
then splits the points to convert these faces into completely separate
boundary patches. This functionality was previously provided by calling
mergeOrSplitBaffles with the "-split" option.

mergeBaffles also identifes the duplicate baffle faces, but then merges
them, converting them into a single set of internal faces. This
functionality was previously provided by calling mergeOrSplitBaffles
without the "-split" option.
2021-06-25 10:30:39 +01:00
9c73d4d206 decomposeParDict: The 'delta' entry for geometric decomposition is no option and defaults to 0.001
When using 'simple' or 'hierarchical' decomposition it is useful to slightly rotate a
coordinate-aligned block-mesh to improve the processor boundaries by avoiding
irregular cell distribution at those boundaries.  The degree of slight rotation
is controlled by the 'delta' coefficient and a value of 0.001 is generally
suitable so to avoid unnecessary clutter in 'decomposeParDict' 'delta' now
defaults to this value.
2021-06-24 10:18:20 +01:00
01494463d0 FoamFile: 'version' entry is now optional, defaulting to 2.0
The FOAM file format has not changed from version 2.0 in many years and so there
is no longer a need for the 'version' entry in the FoamFile header to be
required and to reduce unnecessary clutter it is now optional, defaulting to the
current file format 2.0.
2021-06-23 20:50:10 +01:00
5f64d07ca8 tutorials: remove redirects to /dev/null 2021-06-21 16:44:38 +01:00
ca35389788 snappyHexMesh: 'refinementRegions', 'refinementSurfaces' and 'features' are now optional
entries in 'castellatedMeshControls' in snappyHexMeshDict to remove unnecessary clutter.
2021-06-21 13:30:53 +01:00
4b01e40a93 Dictionaries: use 'e' rather than 'E' in exponential floating point numbers 2021-06-15 18:25:51 +01:00
926ba22b74 refineMesh: Rationalised and standardised the coordinate axes naming to e1, e2 and e3
the previous naming tan1, tan2, normal was non-intuitive and very confusing.

It was not practical to maintain backward compatibility but all tutorials and
example refineMeshDict files have been updated to provide examples of the
change.
2021-06-15 16:08:55 +01:00
be9fb841a1 snappyHexMesh: Simplified and rationalised the region refinement level specification
The inside or outside region refinement level is now specified using the simple
"level <level>" entry in refinementRegions e.g.

    refinementRegions
    {
        refinementBox
        {
            mode    inside;
            level   5;
        }
    }

rather than

    refinementRegions
    {
        refinementBox
        {
            mode    inside;
            levels  ((1E15 5));
        }
    }

where the spurious "1E15" number is not used and the '((...))' is unnecessary clutter.
2021-06-15 13:20:44 +01:00
55f751641e Standardise on British spelling: initialize -> initialise
OpenFOAM is predominantly written in Britain with British spelling conventions
so -ise is preferred to -ize.
2021-06-01 14:51:48 +01:00
0510053f61 tutorials: Removed obsolete patch ordering and transform entries
Resolves bug report: http://bugs.openfoam.org/view.php?id=3672
2021-05-14 09:06:18 +01:00
227734ddf8 transform: Standardised the Rx, Ry, Rz and Ra rotational tranformations
so that they operate in the conventional manner in a right-handed coordinate
system:

//- Rotational transformation tensor about the x-axis by omega radians
//  The rotation is defined in a right-handed coordinate system
//  i.e. clockwise with respect to the axis from -ve to +ve
//  (looking along the axis).
inline tensor Rx(const scalar& omega)

//- Rotational transformation tensor about the y-axis by omega radians
//  The rotation is defined in a right-handed coordinate system
//  i.e. clockwise with respect to the axis from -ve to +ve
//  (looking along the axis).
inline tensor Ry(const scalar& omega)

//- Rotational transformation tensor about the z-axis by omega radians
//  The rotation is defined in a right-handed coordinate system
//  i.e. clockwise with respect to the axis from -ve to +ve
//  (looking along the axis).
inline tensor Rz(const scalar& omega)

//- Rotational transformation tensor about axis a by omega radians
//  The rotation is defined in a right-handed coordinate system
//  i.e. clockwise with respect to the axis from -ve to +ve
//  (looking along the axis).
inline tensor Ra(const vector& a, const scalar omega)
2021-03-30 13:11:48 +01:00
0d679d926a surfaceTransformPoints: Updated to use the new transformer class
Description
    Transform (translate, rotate, scale) a surface.

Usage
    \b surfaceTransformPoints "\<transformations\>" \<input\> \<output\>
    Supported transformations:
      - \par translate=<translation vector>
        Translational transformation by given vector
      - \par rotate=(\<n1 vector\> \<n2 vector\>)
        Rotational transformation from unit vector n1 to n2
      - \par Rx=\<angle [deg] about x-axis\>
        Rotational transformation by given angle about x-axis
      - \par Ry=\<angle [deg] about y-axis\>
        Rotational transformation by given angle about y-axis
      - \par Rz=\<angle [deg] about z-axis\>
        Rotational transformation by given angle about z-axis
      - \par Ra=\<axis vector\> \<angle [deg] about axis\>
        Rotational transformation by given angle about given axis
      - \par scale=\<x-y-z scaling vector\>
        Anisotropic scaling by the given vector in the x, y, z
        coordinate directions

    Example usage:
        surfaceTransformPoints \
            "translate=(-0.586 0 -0.156), \
            Ry=3.485, \
            translate=(0.586 0 0.156)" \
            constant/geometry/w3_orig.stl constant/geometry/w3.stl
2021-03-29 16:14:48 +01:00
45dca30c51 surfaceTransformPoints: Generalised to apply a sequence of transformations
The transformation sequence is specified like a substitution string used by

Description
    Transform (translate, rotate, scale) a surface.

    The rollPitchYaw option takes three angles (degrees):
    - roll (rotation about x) followed by
    - pitch (rotation about y) followed by
    - yaw (rotation about z)

    The yawPitchRoll does yaw followed by pitch followed by roll.

Usage
    \b surfaceTransformPoints "\<transformations\>" \<input\> \<output\>

    Example usage:
        surfaceTransformPoints \
            "translate=(-0.586 0 -0.156), \
            rollPitchYaw=(0 -3.485 0), \
            translate=(0.586 0 0.156)" \
            constant/geometry/w3_orig.stl constant/geometry/w3.stl
2021-03-28 13:36:50 +01:00
da3f4cc92e fvModels, fvConstraints: Rational separation of fvOptions between physical modelling and numerical constraints
The new fvModels is a general interface to optional physical models in the
finite volume framework, providing sources to the governing conservation
equations, thus ensuring consistency and conservation.  This structure is used
not only for simple sources and forces but also provides a general run-time
selection interface for more complex models such as radiation and film, in the
future this will be extended to Lagrangian, reaction, combustion etc.  For such
complex models the 'correct()' function is provided to update the state of these
models at the beginning of the PIMPLE loop.

fvModels are specified in the optional constant/fvModels dictionary and
backward-compatibility with fvOption is provided by reading the
constant/fvOptions or system/fvOptions dictionary if present.

The new fvConstraints is a general interface to optional numerical constraints
applied to the matrices of the governing equations after construction and/or to
the resulting field after solution.  This system allows arbitrary changes to
either the matrix or solution to ensure numerical or other constraints and hence
violates consistency with the governing equations and conservation but it often
useful to ensure numerical stability, particularly during the initial start-up
period of a run.  Complex manipulations can be achieved with fvConstraints, for
example 'meanVelocityForce' used to maintain a specified mean velocity in a
cyclic channel by manipulating the momentum matrix and the velocity solution.

fvConstraints are specified in the optional system/fvConstraints dictionary and
backward-compatibility with fvOption is provided by reading the
constant/fvOptions or system/fvOptions dictionary if present.

The separation of fvOptions into fvModels and fvConstraints provides a rational
and consistent separation between physical and numerical models which is easier
to understand and reason about, avoids the confusing issue of location of the
controlling dictionary file, improves maintainability and easier to extend to
handle current and future requirements for optional complex physical models and
numerical constraints.
2021-03-07 22:45:01 +00:00
7d22121153 tutorials/multiphase/interFoam/RAS/waterChannel/Allmesh: Updated extrudeMesh -dict option 2021-03-05 13:46:55 +00:00
be0ee0f464 tutorials/multiphase/interFoam/RAS/planingHullW3: Removed unused scheme 2021-02-17 15:18:36 +00:00
6b29786f36 mixerVesselAMI: delete buried README file 2021-02-12 15:12:10 +00:00
35f73c1c17 angledDuct: Removed blockMeshDict.m4 and replaced by angledDuct dictionary.
Vertices are generated using run time compilation functionality.

File duplication avoided by placement in:
tutorials/resources/blockMesh/angledDuct.
2021-02-05 08:53:31 +00:00
66c62e9296 searchableSurface: Renamed geometry directory triSurface -> geometry
Originally the only supported geometry specification were triangulated surfaces,
hence the name of the directory: constant/triSurface, however now that other
surface specifications are supported and provided it is much more logical that
the directory is named accordingly: constant/geometry.  All tutorial and
template cases have been updated.

Note that backward compatibility is provided such that if the constant/geometry
directory does not exist but constant/triSurface does then the geometry files
are read from there.
2021-02-04 13:51:48 +00:00
c2f4c6191d interFoam: Added support for phase-change with cavitation models
The phase-change functionality in interPhaseChangeFoam has been generalised and
moved into the run-time selectable twoPhaseChange library included into
interFoam providing optional phase-change.  The three cavitation models provided
in interPhaseChangeFoam are now included in the twoPhaseChange library and the
two interPhaseChangeFoam cavitation tutorials updated for interFoam.

interPhaseChangeFoam has been replaced by a user redirection script which prints
the following message:

The interPhaseChangeFoam solver has solver has been replaced by the more general
interFoam solver, which now supports phase-change using the new twoPhaseChange
models library.

To run with with phase-change create a constant/phaseChangeProperties dictionary
containing the phase-change model specification, e.g.

    phaseChangeModel SchnerrSauer;

    pSat            2300;   // Saturation pressure

See the following cases for an example converted from interPhaseChangeFoam:

    $FOAM_TUTORIALS/multiphase/interFoam/laminar/cavitatingBullet
    $FOAM_TUTORIALS/multiphase/interFoam/RAS/propeller
2021-01-24 23:35:17 +00:00
dabceadd13 tutorials/multiphase/interFoam/RAS/waterChannel: Removed ".*" from BCs to avoid confusion 2021-01-11 20:23:03 +00:00
0a053fc5fe extrudeMesh: Added -dict option 2020-12-10 16:31:18 +00:00
36731b2fe9 tutorials: Prevent foamDictionary output from printing during test loop
foamDictionary executions are now wrapped by runApplication like any
other execution so that they do not print during a test loop.
foamDictionary does not produce a conforming log, however, so
log.foamDictionary has been filtered out of the formation of the test
loop report so that false failures are not reported.
2020-07-24 14:11:32 +01:00