Commit Graph

113 Commits

Author SHA1 Message Date
376b51b58b multiphaseEulerFoam::populationBalanceModel: improved dilatation treatment
The population balance model considers dilatation originating from density
change and mass transfer via source terms describing nucleation as well as
"drift" of the size distribution to smaller or larger sizes. Numerically, the
treatment does not necessarily equal the total dilatation, hence a correction is
introduced to ensure boundedness of the size group fractions.

Patch contributed by Institute of Fluid Dynamics,
Helmholtz-Zentrum Dresden - Rossendorf (HZDR)
and VTT Technical Research Centre of Finland Ltd.
2022-04-29 16:18:03 +01:00
95b6b0c003 tutorials: Renamed 2D MRF mixer vessel cases to mixerVessel2DMRF 2022-04-27 12:31:09 +01:00
3bac211785 epsilonmWallFunction: New wall-function specifically for the mixtureKEpsilon model
epsilonm is obtained by combining epsilon.gas and epsilon.liquid in a two-phase
system, each of which will apply the epsilonWallFunction at walls; the
epsilonmWallFunction propagates the resulting wall epsilonm into the near-wall
cells.

If the 0/epsilonm file is provided the epsilonmWallFunction should be specified
for walls, if the 0/epsilonm file is not provided it will be generated
automatically and the epsilonmWallFunction applied to walls for which the
epsilonWallFunction is specified in the epsilon.liquid file.
2022-04-20 18:48:35 +01:00
5e99344348 multiphaseEulerFoam::populationBalanceModel: Removed temporary dilatation correction
and updated tutorials to work with the current phase limit stabilisation.
2022-04-12 10:23:42 +01:00
b8ce733e4b fvMesh: Separated fvMesh::move() and fvMesh::update()
fvMesh::update() now executes at the beginning of the time-step, before time is
incremented and handles topology change, mesh to mesh mapping and redistribution
without point motion.  Following each of these mesh changes fields are mapped
from the previous mesh state to new mesh state in a conservative manner.  These
mesh changes not occur at most once per time-step.

fvMesh::move() is executed after time is incremented and handles point motion
mesh morphing during the time-step in an Arbitrary Lagrangian Eulerian approach
requiring the mesh motion flux to match the cell volume change.  fvMesh::move()
can be called any number of times during the time-step to allow iterative update
of the coupling between the mesh motion and field solution.
2022-04-08 18:46:12 +01:00
bbaba1a645 topoSetDict: Corrected/updated formatting
Patch contributed by Institute of Fluid Dynamics, Helmholtz-Zentrum
Dresden - Rossendorf (HZDR)
2022-03-14 13:49:07 +00:00
8cecaa8b6e MultiComponentPhaseModel: Replaced local residualAlpha_ with phase.residualAlpha()
There is no clear need for a residualAlpha to be defined specifically for Yi and
read from the fvSolution dictionary, the phase.residualAlpha() should be
suitable to stabilise the Yi equations.
2022-03-01 18:00:06 +00:00
99cfbd818f blockMesh: Added warning to set defaultPatch appropriately for snappyHexMesh and 2D cases
The defaultPatch type currently defaults to empty which is appropriate for 1D
and 2D cases but not when creating the initial blockMesh for snappyHexMesh as
the presence of empty patches triggers the inappropriate application of 2D point
constraint corrections following snapping and morphing.  To avoid this hidden
problem a warning is now generated from blockMesh when the defaultPatch is not
explicitly set for cases which generate a default patch, i.e. for which the
boundary is not entirely defined.  e.g.

.
.
.
Creating block mesh topology

--> FOAM FATAL IO ERROR:
The 'defaultPatch' type must be specified for the 'defaultFaces' patch, e.g. for snappyHexMesh

    defaultPatch
    {
        name default; // optional
        type patch;
    }

or for 2D meshes

    defaultPatch
    {
        name frontAndBack; // optional
        type empty;
    }
.
.
.

All the tutorials have been update to include the defaultPatch specification as
appropriate.
2022-02-24 21:35:09 +00:00
fbe65c0865 tutorials/multiphase/multiphaseEulerFoam: Multiphase blending changes
Updated tutorials for the changes to the blending system. Cases using
"none" blending have been updated to use "continuous" or "segregated" as
appropriate.

The bed tutorial has been extended to include a proper switch to a bed
drag model (AttouFerschneider) when the solid phase displaces the
fluids. This change made the trickleBed case a subset of the bed case,
so the trickleBed has been removed.
2022-01-28 09:24:28 +00:00
64a6562a1e tutorials/multiphase/multiphaseEulerFoam: Backwards compatible changes
These changes are not required for the cases to run with the new
phaseInterface system. The syntax prior to this commit will be read in
the new phaseInterface system's backwards compatibility mode.
2022-01-28 09:24:28 +00:00
807e517274 tutorials/multiphase/multiphaseEulerFoam: Non-backwards compatible changes
These changes are required for the cases to run with the new
phaseInterface system.
2022-01-28 09:24:28 +00:00
8bb48df87f flowRateInletVelocityFvPatchVectorField: Added optional profile entry to specify the velocity profile
The unreliable extrapolateProfile option has been replaced by the more flexible
and reliable profile option which allows the velocity profile to be specified as
a Function1 of the normalised distance to the wall.  To simplify the
specification of the most common velocity profiles the new laminarBL (quadratic
profile) and turbulentBL (1/7th power law) Function1s are provided.

In addition to the new profile option the flow rate can now be specified as a
meanVelocity, volumetricFlowRate or massFlowRate, all of which are Function1s of
time.

The following tutorials have been updated to use the laminarBL profile:
    multiphase/multiphaseEulerFoam/laminar/titaniaSynthesis
    multiphase/multiphaseEulerFoam/laminar/titaniaSynthesisSurface

The following tutorials have been updated to use the turbulentBL profile:
    combustion/reactingFoam/Lagrangian/verticalChannel
    combustion/reactingFoam/Lagrangian/verticalChannelLTS
    combustion/reactingFoam/Lagrangian/verticalChannelSteady
    compressible/rhoPimpleFoam/RAS/angledDuct
    compressible/rhoPimpleFoam/RAS/angledDuctLTS
    compressible/rhoPimpleFoam/RAS/squareBendLiq
    compressible/rhoPorousSimpleFoam/angledDuctImplicit
    compressible/rhoSimpleFoam/angledDuctExplicitFixedCoeff
    compressible/rhoSimpleFoam/squareBend
    compressible/rhoSimpleFoam/squareBendLiq
    heatTransfer/chtMultiRegionFoam/shellAndTubeHeatExchanger
    heatTransfer/chtMultiRegionFoam/shellAndTubeHeatExchanger
    incompressible/porousSimpleFoam/angledDuctImplicit
    incompressible/porousSimpleFoam/straightDuctImplicit
    multiphase/interFoam/RAS/angledDuct

Class
    Foam::flowRateInletVelocityFvPatchVectorField

Description
    Velocity inlet boundary condition creating a velocity field with
    optionally specified profile normal to the patch adjusted to match the
    specified mass flow rate, volumetric flow rate or mean velocity.

    For a mass-based flux:
    - the flow rate should be provided in kg/s
    - if \c rho is "none" the flow rate is in m3/s
    - otherwise \c rho should correspond to the name of the density field
    - if the density field cannot be found in the database, the user must
      specify the inlet density using the \c rhoInlet entry

    For a volumetric-based flux:
    - the flow rate is in m3/s

Usage
    \table
        Property     | Description             | Required    | Default value
        massFlowRate | Mass flow rate [kg/s]   | no          |
        volumetricFlowRate | Volumetric flow rate [m^3/s]| no |
        meanVelocity | Mean velocity [m/s]| no |
        profile      | Velocity profile        | no          |
        rho          | Density field name      | no          | rho
        rhoInlet     | Inlet density           | no          |
        alpha        | Volume fraction field name | no       |
    \endtable

    Example of the boundary condition specification for a volumetric flow rate:
    \verbatim
    <patchName>
    {
        type                flowRateInletVelocity;
        volumetricFlowRate  0.2;
        profile             laminarBL;
    }
    \endverbatim

    Example of the boundary condition specification for a mass flow rate:
     \verbatim
    <patchName>
    {
        type                flowRateInletVelocity;
        massFlowRate        0.2;
        profile             turbulentBL;
        rho                 rho;
        rhoInlet            1.0;
    }
    \endverbatim

    Example of the boundary condition specification for a volumetric flow rate:
    \verbatim
    <patchName>
    {
        type                flowRateInletVelocity;
        meanVelocity        5;
        profile             turbulentBL;
    }
    \endverbatim

    The \c volumetricFlowRate, \c massFlowRate or \c meanVelocity entries are
    \c Function1 of time, see Foam::Function1s.

    The \c profile entry is a \c Function1 of the normalised distance to the
    wall.  Any suitable Foam::Function1s can be used including
    Foam::Function1s::codedFunction1 but Foam::Function1s::laminarBL and
    Foam::Function1s::turbulentBL have been created specifically for this
    purpose and are likely to be appropriate for most cases.

Note
    - \c rhoInlet is required for the case of a mass flow rate, where the
      density field is not available at start-up
    - The value is positive into the domain (as an inlet)
    - May not work correctly for transonic inlets
    - Strange behaviour with potentialFoam since the U equation is not solved

See also
    Foam::fixedValueFvPatchField
    Foam::Function1s::laminarBL
    Foam::Function1s::turbulentBL
    Foam::Function1s
    Foam::flowRateOutletVelocityFvPatchVectorField
2022-01-24 19:10:39 +00:00
66f325fc41 multiphaseEulerFoam: Add "none" diameterModel for phases that are always continuous
This model will generate an error if the diameter is requested. This
will happen if another sub model is included that depends on the
diameter of the continuous phase. It therefore provides a check that the
sub-modelling combination is valid.

Patch contributed by Institute of Fluid Dynamics,
Helmholtz-Zentrum Dresden - Rossendorf (HZDR)
2022-01-19 15:21:06 +00:00
794255284f multiphaseEulerFoam: revised sizeDistribution functionObject
Following the addition of the new moments functionObject, all related
functionality was removed from sizeDistribution.

In its revised version, sizeDistribution allows for different kinds of
weighted region averaging in case of field-dependent representative
particle properties.

A packaged function has also been added to allow for command line solver
post-processing.

For example, the following function object specification returns the
volume-based number density function:

    numberDensity
    {
        type                sizeDistribution;
        libs                ("libmultiphaseEulerFoamFunctionObjects.so");
        writeControl        writeTime;
        populationBalance   bubbles;
        functionType        numberDensity;
        coordinateType      volume;
        setFormat           raw;
    }

The same can be achieved using a packaged function:

    #includeFunc sizeDistribution
    (
        populationBalance=bubbles,
        functionType=numberDensity,
        coordinateType=volume,
        funcName=numberDensity
    )

Or on the command line:

    multiphaseEulerFoam -postProcess -func "
    sizeDistribution
    (
        populationBalance=bubbles,
        functionType=numberDensity,
        coordinateType=volume,
        funcName=numberDensity
    )"

Patch contributed by Institute of Fluid Dynamics,
Helmholtz-Zentrum Dresden - Rossendorf (HZDR)
2022-01-07 09:48:30 +00:00
f97f6326f0 Decomposition/redistribution: Separated choice of mesh decomposition and redistribution methods
When snappyHexMesh is run in parallel it re-balances the mesh during refinement
and layer addition by redistribution which requires a decomposition method
that operates in parallel, e.g. hierachical or ptscotch.  decomposePar uses a
decomposition method which operates in serial e.g. hierachical but NOT
ptscotch.  In order to run decomposePar followed by snappyHexMesh in parallel it
has been necessary to change the method specified in decomposeParDict but now
this is avoided by separately specifying the decomposition and distribution
methods, e.g. in the incompressible/simpleFoam/motorBike case:

numberOfSubdomains  6;

decomposer      hierarchical;
distributor     ptscotch;

hierarchicalCoeffs
{
    n               (3 2 1);
    order           xyz;
}

The distributor entry is also used for run-time mesh redistribution, e.g. in the
multiphase/interFoam/RAS/floatingObject case re-distribution for load-balancing
is enabled in constant/dynamicMeshDict:

distributor
{
    type            distributor;

    libs            ("libfvMeshDistributors.so");

    redistributionInterval  10;
}

which uses the distributor specified in system/decomposeParDict:

distributor     hierarchical;

This rationalisation provides the structure for development of mesh
redistribution and load-balancing.
2021-12-15 22:12:00 +00:00
3761c48e1c multiphaseEulerFoam: Make aspect ratio models sub-models of force models
These models are quite configuration specific. It makes sense to make
them sub-models of the force (drag or lift) models that use them, rather
than making them fundamental properties of the phase system.
2021-12-14 11:26:16 +00:00
7dfb7146ea tutorials::blockMeshDict: Removed redundant mergePatchPairs and edges entries 2021-12-08 13:02:40 +00:00
25a6d068f0 sampledSets, streamlines: Various improvements
Sampled sets and streamlines now write all their fields to the same
file. This prevents excessive duplication of the geometry and makes
post-processing tasks more convenient.

"axis" entries are now optional in sampled sets and streamlines. When
omitted, a default entry will be used, which is chosen appropriately for
the coordinate set and the write format. Some combinations are not
supported. For example, a scalar ("x", "y", "z" or "distance") axis
cannot be used to write in the vtk format, as vtk requires 3D locations
with which to associate data. Similarly, a point ("xyz") axis cannot be
used with the gnuplot format, as gnuplot needs a single scalar to
associate with the x-axis.

Streamlines can now write out fields of any type, not just scalars and
vectors, and there is no longer a strict requirement for velocity to be
one of the fields.

Streamlines now output to postProcessing/<functionName>/time/<file> in
the same way as other functions. The additional "sets" subdirectory has
been removed.

The raw set writer now aligns columns correctly.

The handling of segments in coordSet and sampledSet has been
fixed/completed. Segments mean that a coordinate set can represent a
number of contiguous lines, disconnected points, or some combination
thereof. This works in parallel; segments remain contiguous across
processor boundaries. Set writers now only need one write method, as the
previous "writeTracks" functionality is now handled by streamlines
providing the writer with the appropriate segment structure.

Coordinate sets and set writers now have a convenient programmatic
interface. To write a graph of A and B against some coordinate X, in
gnuplot format, we can call the following:

    setWriter::New("gnuplot")->write
    (
        directoryName,
        graphName,
        coordSet(true, "X", X), // <-- "true" indicates a contiguous
        "A",                    //     line, "false" would mean
        A,                      //     disconnected points
        "B",
        B
    );

This write function is variadic. It supports any number of
field-name-field pairs, and they can be of any primitive type.

Support for Jplot and Xmgrace formats has been removed. Raw, CSV,
Gnuplot, VTK and Ensight formats are all still available.

The old "graph" functionality has been removed from the code, with the
exception of the randomProcesses library and associated applications
(noise, DNSFoam and boxTurb). The intention is that these should also
eventually be converted to use the setWriters. For now, so that it is
clear that the "graph" functionality is not to be used elsewhere, it has
been moved into a subdirectory of the randomProcesses library.
2021-12-07 11:18:27 +00:00
cf3d6cd1e9 fvMeshMovers, fvMeshTopoChangers: General mesh motion and topology change replacement for dynamicFvMesh
Mesh motion and topology change are now combinable run-time selectable options
within fvMesh, replacing the restrictive dynamicFvMesh which supported only
motion OR topology change.

All solvers which instantiated a dynamicFvMesh now instantiate an fvMesh which
reads the optional constant/dynamicFvMeshDict to construct an fvMeshMover and/or
an fvMeshTopoChanger.  These two are specified within the optional mover and
topoChanger sub-dictionaries of dynamicFvMeshDict.

When the fvMesh is updated the fvMeshTopoChanger is first executed which can
change the mesh topology in anyway, adding or removing points as required, for
example for automatic mesh refinement/unrefinement, and all registered fields
are mapped onto the updated mesh.  The fvMeshMover is then executed which moved
the points only and calculates the cell volume change and corresponding
mesh-fluxes for conservative moving mesh transport.  If multiple topological
changes or movements are required these would be combined into special
fvMeshMovers and fvMeshTopoChangers which handle the processing of a list of
changes, e.g. solidBodyMotionFunctions:multiMotion.

The tutorials/multiphase/interFoam/laminar/sloshingTank3D3DoF case has been
updated to demonstrate this new functionality by combining solid-body motion
with mesh refinement/unrefinement:

/*--------------------------------*- C++ -*----------------------------------*\
  =========                 |
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox
   \\    /   O peration     | Website:  https://openfoam.org
    \\  /    A nd           | Version:  dev
     \\/     M anipulation  |
\*---------------------------------------------------------------------------*/
FoamFile
{
    format      ascii;
    class       dictionary;
    location    "constant";
    object      dynamicMeshDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

mover
{
    type    motionSolver;

    libs    ("libfvMeshMovers.so" "libfvMotionSolvers.so");

    motionSolver    solidBody;

    solidBodyMotionFunction SDA;

    CofG            (0 0 0);
    lamda           50;
    rollAmax        0.2;
    rollAmin        0.1;
    heaveA          4;
    swayA           2.4;
    Q               2;
    Tp              14;
    Tpn             12;
    dTi             0.06;
    dTp             -0.001;
}

topoChanger
{
    type    refiner;

    libs    ("libfvMeshTopoChangers.so");

    // How often to refine
    refineInterval  1;

    // Field to be refinement on
    field           alpha.water;

    // Refine field in between lower..upper
    lowerRefineLevel 0.001;
    upperRefineLevel 0.999;

    // Have slower than 2:1 refinement
    nBufferLayers   1;

    // Refine cells only up to maxRefinement levels
    maxRefinement   1;

    // Stop refinement if maxCells reached
    maxCells        200000;

    // Flux field and corresponding velocity field. Fluxes on changed
    // faces get recalculated by interpolating the velocity. Use 'none'
    // on surfaceScalarFields that do not need to be reinterpolated.
    correctFluxes
    (
        (phi none)
        (nHatf none)
        (rhoPhi none)
        (alphaPhi.water none)
        (meshPhi none)
        (meshPhi_0 none)
        (ghf none)
    );

    // Write the refinement level as a volScalarField
    dumpLevel       true;
}

// ************************************************************************* //

Note that currently this is the only working combination of mesh-motion with
topology change within the new framework and further development is required to
update the set of topology changers so that topology changes with mapping are
separated from the mesh-motion so that they can be combined with any of the
other movements or topology changes in any manner.

All of the solvers and tutorials have been updated to use the new form of
dynamicMeshDict but backward-compatibility was not practical due to the complete
reorganisation of the mesh change structure.
2021-10-01 15:50:06 +01:00
8fd9f5758c chemistryModel: new general chemistry solver created by merging standardChemistryModel and TDACChemistryModel
To simplify maintenance and further development of chemistry solution the
standardChemistryModel and TDACChemistryModel have been merged into the single
chemistryModel class.  Now the TDAC mechanism reduction and tabulation
components can be individually selected or set to "none" or the corresponding
entries in the chemistryProperties dictionary omitted to switch them off thus
reproducing the behaviour of the standardChemistryModel.

For example the following chemistryProperties includes TDAC:

    #includeEtc "caseDicts/solvers/chemistry/TDAC/chemistryProperties.cfg"

    chemistryType
    {
        solver            ode;
    }

    chemistry       on;

    initialChemicalTimeStep 1e-7;

    odeCoeffs
    {
        solver          seulex;
        absTol          1e-8;
        relTol          1e-1;
    }

    reduction
    {
        tolerance   1e-4;
    }

    tabulation
    {
        tolerance   3e-3;
    }

    #include "reactionsGRI"

and to run without TDAC the following is sufficient:

    chemistryType
    {
        solver            ode;
    }

    chemistry       on;

    initialChemicalTimeStep 1e-7;

    odeCoeffs
    {
        solver          seulex;
        absTol          1e-8;
        relTol          1e-1;
    }

    #include "reactionsGRI"

or the "reduction" and "tabulation" entries can be disabled explicitly:

    #includeEtc "caseDicts/solvers/chemistry/TDAC/chemistryProperties.cfg"

    chemistryType
    {
        solver            ode;
    }

    chemistry       on;

    initialChemicalTimeStep 1e-7;

    odeCoeffs
    {
        solver          seulex;
        absTol          1e-8;
        relTol          1e-1;
    }

    reduction
    {
        method      none;
        tolerance   1e-4;
    }

    tabulation
    {
        method      none;
        tolerance   3e-3;
    }

    #include "reactionsGRI"
2021-09-13 12:17:40 +01:00
65ef2cf331 physicalProperties: Standardised incompressible and compressible solver fluid properties
to provide a single consistent code and user interface to the specification of
physical properties in both single-phase and multi-phase solvers.  This redesign
simplifies usage and reduces code duplication in run-time selectable solver
options such as 'functionObjects' and 'fvModels'.

* physicalProperties
  Single abstract base-class for all fluid and solid physical property classes.

  Physical properties for a single fluid or solid within a region are now read
  from the 'constant/<region>/physicalProperties' dictionary.

  Physical properties for a phase fluid or solid within a region are now read
  from the 'constant/<region>/physicalProperties.<phase>' dictionary.

  This replaces the previous inconsistent naming convention of
  'transportProperties' for incompressible solvers and
  'thermophysicalProperties' for compressible solvers.

  Backward-compatibility is provided by the solvers reading
  'thermophysicalProperties' or 'transportProperties' if the
  'physicalProperties' dictionary does not exist.

* phaseProperties
  All multi-phase solvers (VoF and Euler-Euler) now read the list of phases and
  interfacial models and coefficients from the
  'constant/<region>/phaseProperties' dictionary.

  Backward-compatibility is provided by the solvers reading
  'thermophysicalProperties' or 'transportProperties' if the 'phaseProperties'
  dictionary does not exist.  For incompressible VoF solvers the
  'transportProperties' is automatically upgraded to 'phaseProperties' and the
  two 'physicalProperties.<phase>' dictionary for the phase properties.

* viscosity
  Abstract base-class (interface) for all fluids.

  Having a single interface for the viscosity of all types of fluids facilitated
  a substantial simplification of the 'momentumTransport' library, avoiding the
  need for a layer of templating and providing total consistency between
  incompressible/compressible and single-phase/multi-phase laminar, RAS and LES
  momentum transport models.  This allows the generalised Newtonian viscosity
  models to be used in the same form within laminar as well as RAS and LES
  momentum transport closures in any solver.  Strain-rate dependent viscosity
  modelling is particularly useful with low-Reynolds number turbulence closures
  for non-Newtonian fluids where the effect of bulk shear near the walls on the
  viscosity is a dominant effect.  Within this framework it would also be
  possible to implement generalised Newtonian models dependent on turbulent as
  well as mean strain-rate if suitable model formulations are available.

* visosityModel
  Run-time selectable Newtonian viscosity model for incompressible fluids
  providing the 'viscosity' interface for 'momentumTransport' models.

  Currently a 'constant' Newtonian viscosity model is provided but the structure
  supports more complex functions of time, space and fields registered to the
  region database.

  Strain-rate dependent non-Newtonian viscosity models have been removed from
  this level and handled in a more general way within the 'momentumTransport'
  library, see section 'viscosity' above.

  The 'constant' viscosity model is selected in the 'physicalProperties'
  dictionary by

      viscosityModel  constant;

  which is equivalent to the previous entry in the 'transportProperties'
  dictionary

      transportModel  Newtonian;

  but backward-compatibility is provided for both the keyword and model
  type.

* thermophysicalModels
  To avoid propagating the unnecessary constructors from 'dictionary' into the
  new 'physicalProperties' abstract base-class this entire structure has been
  removed from the 'thermophysicalModels' library.  The only use for this
  constructor was in 'thermalBaffle' which now reads the 'physicalProperties'
  dictionary from the baffle region directory which is far simpler and more
  consistent and significantly reduces the amount of constructor code in the
  'thermophysicalModels' library.

* compressibleInterFoam
  The creation of the 'viscosity' interface for the 'momentumTransport' models
  allows the complex 'twoPhaseMixtureThermo' derived from 'rhoThermo' to be
  replaced with the much simpler 'compressibleTwoPhaseMixture' derived from the
  'viscosity' interface, avoiding the myriad of unused thermodynamic functions
  required by 'rhoThermo' to be defined for the mixture.

  Same for 'compressibleMultiphaseMixture' in 'compressibleMultiphaseInterFoam'.

This is a significant improvement in code and input consistency, simplifying
maintenance and further development as well as enhancing usability.

Henry G. Weller
CFD Direct Ltd.
2021-07-30 17:19:54 +01:00
15a27fee87 topoSet: the sourceInfo sub-dictionary of the topoSetDict actions is now optional
and only needed if there is a name clash between entries in the source
specification and the set specification, e.g. "name":

    {
        name    rotorCells;
        type    cellSet;
        action  new;
        source  zoneToCell;
        sourceInfo
        {
            name    cylinder;
        }
    }
2021-07-27 14:07:37 +01:00
98b90398f1 tutorials: Updated for new preconfigurations 2021-07-14 10:35:02 +01:00
056cc20f34 functionObjects: surfaceFieldValue, volFieldValue: Various improvements
A number of changes have been made to the surfaceFieldValue and
volFieldValue function objects to improve their usability and
performance, and to extend them so that similar duplicate functionality
elsewhere in OpenFOAM can be removed.

Weighted operations have been removed. Weighting for averages and sums
is now triggered simply by the existence of the "weightField" or
"weightFields" entry. Multiple weight fields are now supported in both
functions.

The distinction between oriented and non-oriented fields has been
removed from surfaceFieldValue. There is now just a single list of
fields which are operated on. Instead of oriented fields, an
"orientedSum" operation has been added, which should be used for
flowRate calculations and other similar operations on fluxes.

Operations minMag and maxMag have been added to both functions, to
calculate the minimum and maximum field magnitudes respectively. The min
and max operations are performed component-wise, as was the case
previously.

In volFieldValue, minMag and maxMag (and min and mag operations when
applied to scalar fields) will report the location, cell and processor
of the maximum or minimum value. There is also a "writeLocation" option
which if set will write this location information into the output file.
The fieldMinMax function has been made obsolete by this change, and has
therefore been removed.

surfaceFieldValue now operates in parallel without accumulating the
entire surface on the master processor for calculation of the operation.
Collecting the entire surface on the master processor is now only done
if the surface itself is to be written out.
2021-07-13 16:51:33 +01:00
cfd11c035b createBafflesDict: removed matchTolerance entries since they default to 1e-4 2021-07-08 12:14:00 +01:00
78977d3259 systemDict: Added support for system as the default directory for the -dict option
With this change both

    blockMesh -dict fineBlockMeshDict
    blockMesh -dict system/fineBlockMeshDict

are supported, if the system/ path is not specified it is assumed
2021-07-02 21:05:47 +01:00
45a0059026 splitBaffles, mergeBaffles: New utilities to replace mergeOrSplitBaffles
splitBaffles identifies baffle faces; i.e., faces on the mesh boundary
which share the exact same set of points as another boundary face. It
then splits the points to convert these faces into completely separate
boundary patches. This functionality was previously provided by calling
mergeOrSplitBaffles with the "-split" option.

mergeBaffles also identifes the duplicate baffle faces, but then merges
them, converting them into a single set of internal faces. This
functionality was previously provided by calling mergeOrSplitBaffles
without the "-split" option.
2021-06-25 10:30:39 +01:00
9c73d4d206 decomposeParDict: The 'delta' entry for geometric decomposition is no option and defaults to 0.001
When using 'simple' or 'hierarchical' decomposition it is useful to slightly rotate a
coordinate-aligned block-mesh to improve the processor boundaries by avoiding
irregular cell distribution at those boundaries.  The degree of slight rotation
is controlled by the 'delta' coefficient and a value of 0.001 is generally
suitable so to avoid unnecessary clutter in 'decomposeParDict' 'delta' now
defaults to this value.
2021-06-24 10:18:20 +01:00
01494463d0 FoamFile: 'version' entry is now optional, defaulting to 2.0
The FOAM file format has not changed from version 2.0 in many years and so there
is no longer a need for the 'version' entry in the FoamFile header to be
required and to reduce unnecessary clutter it is now optional, defaulting to the
current file format 2.0.
2021-06-23 20:50:10 +01:00
4af28562c5 tutorials/multiphase/multiphaseEulerFoam/laminar/mixerVesselAMI2D: Changed to enthalpy
Solving for enthalpy provides better convergence and stability than internal
energy.  Also correctPhi is now off pending the addition of compressibility
effects to the pcorr equation.
2021-06-22 22:04:05 +01:00
28745eca4b multiphaseEulerFoam: Updated tutorials for improved internal energy pressure work term 2021-06-11 23:23:17 +01:00
6c0087d005 multiphaseEulerFoam: Updated the internal energy pressure work term
The pressure work term for total internal energy is div(U p) which can be
discretised is various ways, given a mass flux field phi it seems logical to
implement it in the form div(phi/interpolate(rho), p) but this is not exactly
consistent with the relationship between enthalpy and internal energy (h = e +
p/rho) and the transport of enthalpy, it would be more consistent to implement
it in the form div(phi, p/rho).  A further improvement in consistency can be
gained by using the same convection scheme for this work term and the convection
term div(phi, e) and for reacting solvers this is easily achieved by using the
multi-variate limiter mvConvection provided for energy and specie convection.

This more consistent total internal energy work term has now been implemented in
all the compressible and reacting flow solvers and provides more accurate
solutions when running with internal energy, particularly for variable density
mixing cases with small pressure variation.

For non-reacting compressible solvers this improvement requires a change to the
corresponding divScheme in fvSchemes:

    "div\(alphaPhi.*,p\)" -> "div\(alphaRhoPhi.*,\(p\|thermo:rho.*\)\)"

and all the tutorials have been updated accordingly.
2021-06-11 19:36:33 +01:00
ee777e4083 Standardise on British spelling: -ize -> -ise
OpenFOAM is predominantly written in Britain with British spelling conventions
so -ise is preferred to -ize.
2021-06-01 19:11:58 +01:00
178828a921 codedBase: Merged with CodedBase to simplify and rationalise the implementation 2021-05-19 17:59:52 +01:00
40bc30c0f7 multiphaseEulerFoam: wallBoiling: Corrections to tabulated thermo
The themo tables used in wallBoiling have had their Cp/Cv values
corrected, and have been coarsened and reduced in size to bound only the
operating point of the wallBoiling tutorials. They have also been moved
to $FOAM_TUTORIALS/resources/thermoData.

The correction to thermophysical properties has improved the stability
of these cases. As a result it has been possible to reduce the amount of
under-relaxation used in the wall modelling.
2021-05-18 13:52:16 +01:00
0510053f61 tutorials: Removed obsolete patch ordering and transform entries
Resolves bug report: http://bugs.openfoam.org/view.php?id=3672
2021-05-14 09:06:18 +01:00
ab7d010a9a fvConstraints: Added limitPressure which replaces pressureControl.limit
To provide more flexibility, extensibility, run-time modifiability and
consistency the handling of optional pressure limits has been moved from
pressureControl (settings in system/fvSolution) to the new limitPressure
fvConstraint (settings in system/fvConstraints).

All tutorials have been updated which provides guidance when upgrading cases but
also helpful error messages are generated for cases using the old settings
providing specific details as to how the case should be updated, e.g. for the
tutorials/compressible/rhoSimpleFoam/squareBend case which has the pressure
limit specification:

SIMPLE
{
...
    pMinFactor      0.1;
    pMaxFactor      2;
...

generates the error message

--> FOAM FATAL IO ERROR:
Pressure limits should now be specified in fvConstraints:

limitp
{
    type       limitPressure;

    minFactor  0.1;
    maxFactor  2;
}

file: /home/dm2/henry/OpenFOAM/OpenFOAM-dev/tutorials/compressible/rhoSimpleFoam/squareBend/system/fvSolution/SIMPLE from line 41 to line 54.
2021-04-27 10:25:28 +01:00
da288597e2 tutorials: Replaced semiImplicitSource with more specific fvModels 2021-03-19 09:43:24 +00:00
4865cd18c5 multiphaseEulerFoam: mixerVessel2D: Made fully incompressible
This now serves as an example of a multiphaseEulerFoam case that
requires pressure referencing.
2021-03-17 08:42:03 +00:00
762fb48ddf multiphaseEulerFoam: Use pressureControl
pMin and pMax settings are now available in multiphaseEulerFoam in the
PIMPLE section of the system/fvOptions file. This is consistent with
other compressible solvers. The pMin setting in system/phaseProperties
is no longer read, and it's presence will result in a warning.
2021-03-17 08:42:03 +00:00
da3f4cc92e fvModels, fvConstraints: Rational separation of fvOptions between physical modelling and numerical constraints
The new fvModels is a general interface to optional physical models in the
finite volume framework, providing sources to the governing conservation
equations, thus ensuring consistency and conservation.  This structure is used
not only for simple sources and forces but also provides a general run-time
selection interface for more complex models such as radiation and film, in the
future this will be extended to Lagrangian, reaction, combustion etc.  For such
complex models the 'correct()' function is provided to update the state of these
models at the beginning of the PIMPLE loop.

fvModels are specified in the optional constant/fvModels dictionary and
backward-compatibility with fvOption is provided by reading the
constant/fvOptions or system/fvOptions dictionary if present.

The new fvConstraints is a general interface to optional numerical constraints
applied to the matrices of the governing equations after construction and/or to
the resulting field after solution.  This system allows arbitrary changes to
either the matrix or solution to ensure numerical or other constraints and hence
violates consistency with the governing equations and conservation but it often
useful to ensure numerical stability, particularly during the initial start-up
period of a run.  Complex manipulations can be achieved with fvConstraints, for
example 'meanVelocityForce' used to maintain a specified mean velocity in a
cyclic channel by manipulating the momentum matrix and the velocity solution.

fvConstraints are specified in the optional system/fvConstraints dictionary and
backward-compatibility with fvOption is provided by reading the
constant/fvOptions or system/fvOptions dictionary if present.

The separation of fvOptions into fvModels and fvConstraints provides a rational
and consistent separation between physical and numerical models which is easier
to understand and reason about, avoids the confusing issue of location of the
controlling dictionary file, improves maintainability and easier to extend to
handle current and future requirements for optional complex physical models and
numerical constraints.
2021-03-07 22:45:01 +00:00
a936156f6d multiphaseEulerFoam: populationBalance: Removed population balance name suffix
A population balance suffix after the phase suffix makes determining the
phase for a given name more complex. The additional suffix is also
unnecessary as a phase can only ever belong to one population balance,
so the phase name alone uniquely idetifies the grouping.

Patch contributed by Institute of Fluid Dynamics,
Helmholtz-Zentrum Dresden - Rossendorf (HZDR)
2021-03-03 14:06:35 +00:00
bdf45fb915 multiphaseEulerFoam: Added correctPhi support for moving-mesh cases with cell-volume change 2021-03-01 17:12:29 +00:00
3f64e27f46 multiphaseEulerFoam: Added phaseSurfaceArrhenius reaction
A modified Arrhenius reaction rate given by:

    k = (A * T^beta * exp(-Ta/T))*a

Where a is the phase surface area per unit volume. The name of the phase is
specified by the user.

Example usage:

    oxidationAtSurface
    {
        type        irreversiblePhaseSurfaceArrhenius;

        reaction    "O2^0 + TiCl4 = TiO2_s + 2Cl2";

        A           4.9e1; // The pre-exponential factor is in units
                           // equal to that in the usual volumetric
                           // reaction rate **divided by length**, as
                           // the Arrhenius expression is taken to give
                           // rate per unit area, not per unit volume
        beta        0.0;
        Ta          8993;

        phase       particles;
    }

This reaction has been applied to the titaniaSynthesisSurface tutorial,
which avoids the need for explicit caching of the surface area density
field.
2021-02-11 16:37:58 +00:00
dcc3f336bd mixerVessel2D: Removed blockMeshDict.m4 and replaced by mixerVessel2D dictionary.
Vertices generated using run time compilation functionality.

File duplication avoided by placement in:
tutorials/resources/blockMesh/mixerVessel2D
2021-02-10 16:45:48 +00:00
7b19245b1e tutorials/.../wallBoiling: Use tabulated properties and add validation
Patch contributed by Juho Peltola, VTT.
2021-02-10 12:51:39 +00:00
4bfe7d48c9 tutorials: Prevent "unconfirmed completion" in test loop 2021-02-09 21:19:40 +00:00
aa4151d649 Function1: Added squarePulse
This function gives a value of one during a user-specified duration, and
zero at all other times. It is useful for defining the time range in
which an injection or ignition heat source or similar operates.

Example usage, scaling a value:

    <name>
    {
        type        scale;
        scale       squarePulse;
        start       0;
        duration    1;
        value       100;
    }

This function has been utilised in a number of tutorial fvOption
configurations to provide a specific window in which the fvOption is
applied. This was previously achieved by "timeStart" and "duration"
controls hard coded into the fvOptions themselves.
2021-02-09 20:02:21 +00:00
69e98dc28d fvOptions: Added massSource option
This fvOption applies a mass source to the continuity equation and to
all field equations.

Example usage:

    massSource
    {
        type            massSource;

        selectionMode   cellSet;
        cellSet         massSource;

        massFlowRate    1e-4;

        fieldValues
        {
            U               (10 0 0);
            T               350;
            k               0.375;
            epsilon         14.855;
        }
    }

Values should be provided for all solved for fields. Warnings will be
issued if values are not provided for fields for which transport equations
are solved. Warnings will also be issued if values are provided for fields
which are not solved for.
2021-02-09 20:02:14 +00:00
81ec2012be titaniaSynthesis: Removed blockMeshDict.m4 and replaced by titaniaSynthesis dictionary. 2021-02-09 15:13:33 +00:00