The population balance model considers dilatation originating from density
change and mass transfer via source terms describing nucleation as well as
"drift" of the size distribution to smaller or larger sizes. Numerically, the
treatment does not necessarily equal the total dilatation, hence a correction is
introduced to ensure boundedness of the size group fractions.
Patch contributed by Institute of Fluid Dynamics,
Helmholtz-Zentrum Dresden - Rossendorf (HZDR)
and VTT Technical Research Centre of Finland Ltd.
epsilonm is obtained by combining epsilon.gas and epsilon.liquid in a two-phase
system, each of which will apply the epsilonWallFunction at walls; the
epsilonmWallFunction propagates the resulting wall epsilonm into the near-wall
cells.
If the 0/epsilonm file is provided the epsilonmWallFunction should be specified
for walls, if the 0/epsilonm file is not provided it will be generated
automatically and the epsilonmWallFunction applied to walls for which the
epsilonWallFunction is specified in the epsilon.liquid file.
There is no clear need for a residualAlpha to be defined specifically for Yi and
read from the fvSolution dictionary, the phase.residualAlpha() should be
suitable to stabilise the Yi equations.
The defaultPatch type currently defaults to empty which is appropriate for 1D
and 2D cases but not when creating the initial blockMesh for snappyHexMesh as
the presence of empty patches triggers the inappropriate application of 2D point
constraint corrections following snapping and morphing. To avoid this hidden
problem a warning is now generated from blockMesh when the defaultPatch is not
explicitly set for cases which generate a default patch, i.e. for which the
boundary is not entirely defined. e.g.
.
.
.
Creating block mesh topology
--> FOAM FATAL IO ERROR:
The 'defaultPatch' type must be specified for the 'defaultFaces' patch, e.g. for snappyHexMesh
defaultPatch
{
name default; // optional
type patch;
}
or for 2D meshes
defaultPatch
{
name frontAndBack; // optional
type empty;
}
.
.
.
All the tutorials have been update to include the defaultPatch specification as
appropriate.
Updated tutorials for the changes to the blending system. Cases using
"none" blending have been updated to use "continuous" or "segregated" as
appropriate.
The bed tutorial has been extended to include a proper switch to a bed
drag model (AttouFerschneider) when the solid phase displaces the
fluids. This change made the trickleBed case a subset of the bed case,
so the trickleBed has been removed.
These changes are not required for the cases to run with the new
phaseInterface system. The syntax prior to this commit will be read in
the new phaseInterface system's backwards compatibility mode.
This model will generate an error if the diameter is requested. This
will happen if another sub model is included that depends on the
diameter of the continuous phase. It therefore provides a check that the
sub-modelling combination is valid.
Patch contributed by Institute of Fluid Dynamics,
Helmholtz-Zentrum Dresden - Rossendorf (HZDR)
Following the addition of the new moments functionObject, all related
functionality was removed from sizeDistribution.
In its revised version, sizeDistribution allows for different kinds of
weighted region averaging in case of field-dependent representative
particle properties.
A packaged function has also been added to allow for command line solver
post-processing.
For example, the following function object specification returns the
volume-based number density function:
numberDensity
{
type sizeDistribution;
libs ("libmultiphaseEulerFoamFunctionObjects.so");
writeControl writeTime;
populationBalance bubbles;
functionType numberDensity;
coordinateType volume;
setFormat raw;
}
The same can be achieved using a packaged function:
#includeFunc sizeDistribution
(
populationBalance=bubbles,
functionType=numberDensity,
coordinateType=volume,
funcName=numberDensity
)
Or on the command line:
multiphaseEulerFoam -postProcess -func "
sizeDistribution
(
populationBalance=bubbles,
functionType=numberDensity,
coordinateType=volume,
funcName=numberDensity
)"
Patch contributed by Institute of Fluid Dynamics,
Helmholtz-Zentrum Dresden - Rossendorf (HZDR)
When snappyHexMesh is run in parallel it re-balances the mesh during refinement
and layer addition by redistribution which requires a decomposition method
that operates in parallel, e.g. hierachical or ptscotch. decomposePar uses a
decomposition method which operates in serial e.g. hierachical but NOT
ptscotch. In order to run decomposePar followed by snappyHexMesh in parallel it
has been necessary to change the method specified in decomposeParDict but now
this is avoided by separately specifying the decomposition and distribution
methods, e.g. in the incompressible/simpleFoam/motorBike case:
numberOfSubdomains 6;
decomposer hierarchical;
distributor ptscotch;
hierarchicalCoeffs
{
n (3 2 1);
order xyz;
}
The distributor entry is also used for run-time mesh redistribution, e.g. in the
multiphase/interFoam/RAS/floatingObject case re-distribution for load-balancing
is enabled in constant/dynamicMeshDict:
distributor
{
type distributor;
libs ("libfvMeshDistributors.so");
redistributionInterval 10;
}
which uses the distributor specified in system/decomposeParDict:
distributor hierarchical;
This rationalisation provides the structure for development of mesh
redistribution and load-balancing.
These models are quite configuration specific. It makes sense to make
them sub-models of the force (drag or lift) models that use them, rather
than making them fundamental properties of the phase system.
Sampled sets and streamlines now write all their fields to the same
file. This prevents excessive duplication of the geometry and makes
post-processing tasks more convenient.
"axis" entries are now optional in sampled sets and streamlines. When
omitted, a default entry will be used, which is chosen appropriately for
the coordinate set and the write format. Some combinations are not
supported. For example, a scalar ("x", "y", "z" or "distance") axis
cannot be used to write in the vtk format, as vtk requires 3D locations
with which to associate data. Similarly, a point ("xyz") axis cannot be
used with the gnuplot format, as gnuplot needs a single scalar to
associate with the x-axis.
Streamlines can now write out fields of any type, not just scalars and
vectors, and there is no longer a strict requirement for velocity to be
one of the fields.
Streamlines now output to postProcessing/<functionName>/time/<file> in
the same way as other functions. The additional "sets" subdirectory has
been removed.
The raw set writer now aligns columns correctly.
The handling of segments in coordSet and sampledSet has been
fixed/completed. Segments mean that a coordinate set can represent a
number of contiguous lines, disconnected points, or some combination
thereof. This works in parallel; segments remain contiguous across
processor boundaries. Set writers now only need one write method, as the
previous "writeTracks" functionality is now handled by streamlines
providing the writer with the appropriate segment structure.
Coordinate sets and set writers now have a convenient programmatic
interface. To write a graph of A and B against some coordinate X, in
gnuplot format, we can call the following:
setWriter::New("gnuplot")->write
(
directoryName,
graphName,
coordSet(true, "X", X), // <-- "true" indicates a contiguous
"A", // line, "false" would mean
A, // disconnected points
"B",
B
);
This write function is variadic. It supports any number of
field-name-field pairs, and they can be of any primitive type.
Support for Jplot and Xmgrace formats has been removed. Raw, CSV,
Gnuplot, VTK and Ensight formats are all still available.
The old "graph" functionality has been removed from the code, with the
exception of the randomProcesses library and associated applications
(noise, DNSFoam and boxTurb). The intention is that these should also
eventually be converted to use the setWriters. For now, so that it is
clear that the "graph" functionality is not to be used elsewhere, it has
been moved into a subdirectory of the randomProcesses library.
to provide a single consistent code and user interface to the specification of
physical properties in both single-phase and multi-phase solvers. This redesign
simplifies usage and reduces code duplication in run-time selectable solver
options such as 'functionObjects' and 'fvModels'.
* physicalProperties
Single abstract base-class for all fluid and solid physical property classes.
Physical properties for a single fluid or solid within a region are now read
from the 'constant/<region>/physicalProperties' dictionary.
Physical properties for a phase fluid or solid within a region are now read
from the 'constant/<region>/physicalProperties.<phase>' dictionary.
This replaces the previous inconsistent naming convention of
'transportProperties' for incompressible solvers and
'thermophysicalProperties' for compressible solvers.
Backward-compatibility is provided by the solvers reading
'thermophysicalProperties' or 'transportProperties' if the
'physicalProperties' dictionary does not exist.
* phaseProperties
All multi-phase solvers (VoF and Euler-Euler) now read the list of phases and
interfacial models and coefficients from the
'constant/<region>/phaseProperties' dictionary.
Backward-compatibility is provided by the solvers reading
'thermophysicalProperties' or 'transportProperties' if the 'phaseProperties'
dictionary does not exist. For incompressible VoF solvers the
'transportProperties' is automatically upgraded to 'phaseProperties' and the
two 'physicalProperties.<phase>' dictionary for the phase properties.
* viscosity
Abstract base-class (interface) for all fluids.
Having a single interface for the viscosity of all types of fluids facilitated
a substantial simplification of the 'momentumTransport' library, avoiding the
need for a layer of templating and providing total consistency between
incompressible/compressible and single-phase/multi-phase laminar, RAS and LES
momentum transport models. This allows the generalised Newtonian viscosity
models to be used in the same form within laminar as well as RAS and LES
momentum transport closures in any solver. Strain-rate dependent viscosity
modelling is particularly useful with low-Reynolds number turbulence closures
for non-Newtonian fluids where the effect of bulk shear near the walls on the
viscosity is a dominant effect. Within this framework it would also be
possible to implement generalised Newtonian models dependent on turbulent as
well as mean strain-rate if suitable model formulations are available.
* visosityModel
Run-time selectable Newtonian viscosity model for incompressible fluids
providing the 'viscosity' interface for 'momentumTransport' models.
Currently a 'constant' Newtonian viscosity model is provided but the structure
supports more complex functions of time, space and fields registered to the
region database.
Strain-rate dependent non-Newtonian viscosity models have been removed from
this level and handled in a more general way within the 'momentumTransport'
library, see section 'viscosity' above.
The 'constant' viscosity model is selected in the 'physicalProperties'
dictionary by
viscosityModel constant;
which is equivalent to the previous entry in the 'transportProperties'
dictionary
transportModel Newtonian;
but backward-compatibility is provided for both the keyword and model
type.
* thermophysicalModels
To avoid propagating the unnecessary constructors from 'dictionary' into the
new 'physicalProperties' abstract base-class this entire structure has been
removed from the 'thermophysicalModels' library. The only use for this
constructor was in 'thermalBaffle' which now reads the 'physicalProperties'
dictionary from the baffle region directory which is far simpler and more
consistent and significantly reduces the amount of constructor code in the
'thermophysicalModels' library.
* compressibleInterFoam
The creation of the 'viscosity' interface for the 'momentumTransport' models
allows the complex 'twoPhaseMixtureThermo' derived from 'rhoThermo' to be
replaced with the much simpler 'compressibleTwoPhaseMixture' derived from the
'viscosity' interface, avoiding the myriad of unused thermodynamic functions
required by 'rhoThermo' to be defined for the mixture.
Same for 'compressibleMultiphaseMixture' in 'compressibleMultiphaseInterFoam'.
This is a significant improvement in code and input consistency, simplifying
maintenance and further development as well as enhancing usability.
Henry G. Weller
CFD Direct Ltd.
and only needed if there is a name clash between entries in the source
specification and the set specification, e.g. "name":
{
name rotorCells;
type cellSet;
action new;
source zoneToCell;
sourceInfo
{
name cylinder;
}
}
A number of changes have been made to the surfaceFieldValue and
volFieldValue function objects to improve their usability and
performance, and to extend them so that similar duplicate functionality
elsewhere in OpenFOAM can be removed.
Weighted operations have been removed. Weighting for averages and sums
is now triggered simply by the existence of the "weightField" or
"weightFields" entry. Multiple weight fields are now supported in both
functions.
The distinction between oriented and non-oriented fields has been
removed from surfaceFieldValue. There is now just a single list of
fields which are operated on. Instead of oriented fields, an
"orientedSum" operation has been added, which should be used for
flowRate calculations and other similar operations on fluxes.
Operations minMag and maxMag have been added to both functions, to
calculate the minimum and maximum field magnitudes respectively. The min
and max operations are performed component-wise, as was the case
previously.
In volFieldValue, minMag and maxMag (and min and mag operations when
applied to scalar fields) will report the location, cell and processor
of the maximum or minimum value. There is also a "writeLocation" option
which if set will write this location information into the output file.
The fieldMinMax function has been made obsolete by this change, and has
therefore been removed.
surfaceFieldValue now operates in parallel without accumulating the
entire surface on the master processor for calculation of the operation.
Collecting the entire surface on the master processor is now only done
if the surface itself is to be written out.
When using 'simple' or 'hierarchical' decomposition it is useful to slightly rotate a
coordinate-aligned block-mesh to improve the processor boundaries by avoiding
irregular cell distribution at those boundaries. The degree of slight rotation
is controlled by the 'delta' coefficient and a value of 0.001 is generally
suitable so to avoid unnecessary clutter in 'decomposeParDict' 'delta' now
defaults to this value.
The FOAM file format has not changed from version 2.0 in many years and so there
is no longer a need for the 'version' entry in the FoamFile header to be
required and to reduce unnecessary clutter it is now optional, defaulting to the
current file format 2.0.
The pressure work term for total internal energy is div(U p) which can be
discretised is various ways, given a mass flux field phi it seems logical to
implement it in the form div(phi/interpolate(rho), p) but this is not exactly
consistent with the relationship between enthalpy and internal energy (h = e +
p/rho) and the transport of enthalpy, it would be more consistent to implement
it in the form div(phi, p/rho). A further improvement in consistency can be
gained by using the same convection scheme for this work term and the convection
term div(phi, e) and for reacting solvers this is easily achieved by using the
multi-variate limiter mvConvection provided for energy and specie convection.
This more consistent total internal energy work term has now been implemented in
all the compressible and reacting flow solvers and provides more accurate
solutions when running with internal energy, particularly for variable density
mixing cases with small pressure variation.
For non-reacting compressible solvers this improvement requires a change to the
corresponding divScheme in fvSchemes:
"div\(alphaPhi.*,p\)" -> "div\(alphaRhoPhi.*,\(p\|thermo:rho.*\)\)"
and all the tutorials have been updated accordingly.
The themo tables used in wallBoiling have had their Cp/Cv values
corrected, and have been coarsened and reduced in size to bound only the
operating point of the wallBoiling tutorials. They have also been moved
to $FOAM_TUTORIALS/resources/thermoData.
The correction to thermophysical properties has improved the stability
of these cases. As a result it has been possible to reduce the amount of
under-relaxation used in the wall modelling.
To provide more flexibility, extensibility, run-time modifiability and
consistency the handling of optional pressure limits has been moved from
pressureControl (settings in system/fvSolution) to the new limitPressure
fvConstraint (settings in system/fvConstraints).
All tutorials have been updated which provides guidance when upgrading cases but
also helpful error messages are generated for cases using the old settings
providing specific details as to how the case should be updated, e.g. for the
tutorials/compressible/rhoSimpleFoam/squareBend case which has the pressure
limit specification:
SIMPLE
{
...
pMinFactor 0.1;
pMaxFactor 2;
...
generates the error message
--> FOAM FATAL IO ERROR:
Pressure limits should now be specified in fvConstraints:
limitp
{
type limitPressure;
minFactor 0.1;
maxFactor 2;
}
file: /home/dm2/henry/OpenFOAM/OpenFOAM-dev/tutorials/compressible/rhoSimpleFoam/squareBend/system/fvSolution/SIMPLE from line 41 to line 54.
pMin and pMax settings are now available in multiphaseEulerFoam in the
PIMPLE section of the system/fvOptions file. This is consistent with
other compressible solvers. The pMin setting in system/phaseProperties
is no longer read, and it's presence will result in a warning.
The new fvModels is a general interface to optional physical models in the
finite volume framework, providing sources to the governing conservation
equations, thus ensuring consistency and conservation. This structure is used
not only for simple sources and forces but also provides a general run-time
selection interface for more complex models such as radiation and film, in the
future this will be extended to Lagrangian, reaction, combustion etc. For such
complex models the 'correct()' function is provided to update the state of these
models at the beginning of the PIMPLE loop.
fvModels are specified in the optional constant/fvModels dictionary and
backward-compatibility with fvOption is provided by reading the
constant/fvOptions or system/fvOptions dictionary if present.
The new fvConstraints is a general interface to optional numerical constraints
applied to the matrices of the governing equations after construction and/or to
the resulting field after solution. This system allows arbitrary changes to
either the matrix or solution to ensure numerical or other constraints and hence
violates consistency with the governing equations and conservation but it often
useful to ensure numerical stability, particularly during the initial start-up
period of a run. Complex manipulations can be achieved with fvConstraints, for
example 'meanVelocityForce' used to maintain a specified mean velocity in a
cyclic channel by manipulating the momentum matrix and the velocity solution.
fvConstraints are specified in the optional system/fvConstraints dictionary and
backward-compatibility with fvOption is provided by reading the
constant/fvOptions or system/fvOptions dictionary if present.
The separation of fvOptions into fvModels and fvConstraints provides a rational
and consistent separation between physical and numerical models which is easier
to understand and reason about, avoids the confusing issue of location of the
controlling dictionary file, improves maintainability and easier to extend to
handle current and future requirements for optional complex physical models and
numerical constraints.
A population balance suffix after the phase suffix makes determining the
phase for a given name more complex. The additional suffix is also
unnecessary as a phase can only ever belong to one population balance,
so the phase name alone uniquely idetifies the grouping.
Patch contributed by Institute of Fluid Dynamics,
Helmholtz-Zentrum Dresden - Rossendorf (HZDR)
TableBase, TableFile and Table now combined into a single simpler Table class
which handle both the reading of embedded and file data using the generalised
TableReader. The new EmbeddedTableReader handles the embedded data reading
providing the functionality of the original Table class within the same
structure that can read the data from separate files.
The input format defaults to 'embedded' unless the 'file' entry is present and
the Table class is added to the run-time selection table under the name 'table'
and 'tableFile' which provides complete backward comparability. However it is
advisable to migrate cases to use the new 'table' entry and all tutorial cases
have been updated.
and renamed defaultSpecie as its mass fraction is derived from the sum of the
mass fractions of all other species and it need not be inert but must be present
everywhere, e.g. N2 in air/fuel combustion which can be involved in the
production of NOx.
The previous name inertSpecie in thermophysicalProperties is supported for
backward compatibility.
This tutorial demonstrates the use of the population balance modeling
capability of multiphaseEulerFoam for the case of a vertical pipe. It
superseeds all bubbleColumnPolydisperse cases, which have been removed.
Patch contributed by Institute of Fluid Dynamics,
Helmholtz-Zentrum Dresden - Rossendorf (HZDR)
foamDictionary executions are now wrapped by runApplication like any
other execution so that they do not print during a test loop.
foamDictionary does not produce a conforming log, however, so
log.foamDictionary has been filtered out of the formation of the test
loop report so that false failures are not reported.
The new optional 'slash' scoping syntax is now the default and provides a more
intuitive and flexible syntax than the previous 'dot' syntax, corresponding to
the common directory/file access syntax used in UNIX, providing support for
reading entries from other dictionary files.
In the 'slash' syntax
'/' is the scope operator
'../' is the parent dictionary scope operator
'!' is the top-level dictionary scope operator
Examples:
internalField 3.4;
active
{
type fixedValue;
value.air $internalField;
}
inactive
{
type anotherFixedValue;
value $../active/value.air;
anotherValue $!active/value.air;
sub
{
value $../../active/value.air;
anotherValue $!active/value.air;
}
}
"U.*"
{
solver GAMG;
}
e.air
{
$U.air;
}
external
{
value $testSlashDict2!active/value.air;
}
active2
{
$testSlashDict2!active;
}
If there is a part of the keyword before the '!' then this is taken to be the
file name of the dictionary from which the entry will be looked-up using the
part of the keyword after the '!'. For example given a file testSlashDict containing
internalField 5.6;
active
{
type fixedValue;
value.air $internalField;
}
entries from it can be read directly from another file, e.g.
external
{
value $testSlashDict2!active/value.air;
}
active2
{
$testSlashDict2!active;
}
which expands to
external
{
value 5.6;
}
active2
{
type fixedValue;
value.air 5.6;
}
These examples are provided in applications/test/dictionary.
The the default syntax can be changed from 'slash' to 'dot' in etc/controlDict
to revert to the previous behaviour:
OptimisationSwitches
{
.
.
.
// Default dictionary scoping syntax
inputSyntax slash; // Change to dot for previous behaviour
}
or within a specific dictionary by adding the entry
See applications/test/dictionary/testDotDict.
The new multiphaseEulerFoam is based on reactingMultiphaseEulerFoam with some
improvements and rationalisation to assist maintenance and further development.
The phase system solution has been enhanced to handle two phases more
effectively and all two-phase specific models updated for compatibility so that
multiphaseEulerFoam can also replace reactingTwoPhaseEulerFoam.
When running multiphaseEulerFoam with only two-phases the default behaviour is
to solve for both phase-fractions but optionally a reference phase can be
specified so that only the other phase-fraction is solved, providing better
compatibility with the behaviour of reactingTwoPhaseEulerFoam.
All reactingMultiphaseEulerFoam and reactingTwoPhaseEulerFoam tutorials have
been updated for multiphaseEulerFoam.