The defaultPatch type currently defaults to empty which is appropriate for 1D
and 2D cases but not when creating the initial blockMesh for snappyHexMesh as
the presence of empty patches triggers the inappropriate application of 2D point
constraint corrections following snapping and morphing. To avoid this hidden
problem a warning is now generated from blockMesh when the defaultPatch is not
explicitly set for cases which generate a default patch, i.e. for which the
boundary is not entirely defined. e.g.
.
.
.
Creating block mesh topology
--> FOAM FATAL IO ERROR:
The 'defaultPatch' type must be specified for the 'defaultFaces' patch, e.g. for snappyHexMesh
defaultPatch
{
name default; // optional
type patch;
}
or for 2D meshes
defaultPatch
{
name frontAndBack; // optional
type empty;
}
.
.
.
All the tutorials have been update to include the defaultPatch specification as
appropriate.
The FOAM file format has not changed from version 2.0 in many years and so there
is no longer a need for the 'version' entry in the FoamFile header to be
required and to reduce unnecessary clutter it is now optional, defaulting to the
current file format 2.0.
The pressure work term for total internal energy is div(U p) which can be
discretised is various ways, given a mass flux field phi it seems logical to
implement it in the form div(phi/interpolate(rho), p) but this is not exactly
consistent with the relationship between enthalpy and internal energy (h = e +
p/rho) and the transport of enthalpy, it would be more consistent to implement
it in the form div(phi, p/rho). A further improvement in consistency can be
gained by using the same convection scheme for this work term and the convection
term div(phi, e) and for reacting solvers this is easily achieved by using the
multi-variate limiter mvConvection provided for energy and specie convection.
This more consistent total internal energy work term has now been implemented in
all the compressible and reacting flow solvers and provides more accurate
solutions when running with internal energy, particularly for variable density
mixing cases with small pressure variation.
For non-reacting compressible solvers this improvement requires a change to the
corresponding divScheme in fvSchemes:
"div\(alphaPhi.*,p\)" -> "div\(alphaRhoPhi.*,\(p\|thermo:rho.*\)\)"
and all the tutorials have been updated accordingly.
To provide more flexibility, extensibility, run-time modifiability and
consistency the handling of optional pressure limits has been moved from
pressureControl (settings in system/fvSolution) to the new limitPressure
fvConstraint (settings in system/fvConstraints).
All tutorials have been updated which provides guidance when upgrading cases but
also helpful error messages are generated for cases using the old settings
providing specific details as to how the case should be updated, e.g. for the
tutorials/compressible/rhoSimpleFoam/squareBend case which has the pressure
limit specification:
SIMPLE
{
...
pMinFactor 0.1;
pMaxFactor 2;
...
generates the error message
--> FOAM FATAL IO ERROR:
Pressure limits should now be specified in fvConstraints:
limitp
{
type limitPressure;
minFactor 0.1;
maxFactor 2;
}
file: /home/dm2/henry/OpenFOAM/OpenFOAM-dev/tutorials/compressible/rhoSimpleFoam/squareBend/system/fvSolution/SIMPLE from line 41 to line 54.
pMin and pMax settings are now available in multiphaseEulerFoam in the
PIMPLE section of the system/fvOptions file. This is consistent with
other compressible solvers. The pMin setting in system/phaseProperties
is no longer read, and it's presence will result in a warning.
The new multiphaseEulerFoam is based on reactingMultiphaseEulerFoam with some
improvements and rationalisation to assist maintenance and further development.
The phase system solution has been enhanced to handle two phases more
effectively and all two-phase specific models updated for compatibility so that
multiphaseEulerFoam can also replace reactingTwoPhaseEulerFoam.
When running multiphaseEulerFoam with only two-phases the default behaviour is
to solve for both phase-fractions but optionally a reference phase can be
specified so that only the other phase-fraction is solved, providing better
compatibility with the behaviour of reactingTwoPhaseEulerFoam.
All reactingMultiphaseEulerFoam and reactingTwoPhaseEulerFoam tutorials have
been updated for multiphaseEulerFoam.