Commit Graph

16 Commits

Author SHA1 Message Date
87e32ab499 Code style: Updated line comments to start with a space
//This is a comment   ->   // This is a comment
2018-05-01 11:57:50 +01:00
f2cc03bf8d MULES: Non-uniform limiting and additional form of limit sum
MULES and CMULES have been extended so that the limits can be supplied
as fields. These arguments are templated so that zeroField, oneField or
UniformField<scalar> can be used in place of a scalar value with no
additional overhead. The flux argument has been removed from the
unlimited CMULES correct functions in order to make this templating
possible.

An additional form of limit sum has also been added to MULES. This
limits the flux sum by ofsetting in proportion to the phase fraction,
rather than by reducing the magnitude of the fluxes with the same sign
as the imbalance. The new procedure makes it possible to limit the flux
sum in the presence of constraints without encountering a divide by
zero.
2018-03-22 16:55:36 +00:00
fc2b2d0c05 OpenFOAM: Rationalized the naming of scalar limits
In early versions of OpenFOAM the scalar limits were simple macro replacements and the
names were capitalized to indicate this.  The scalar limits are now static
constants which is a huge improvement on the use of macros and for consistency
the names have been changed to camel-case to indicate this and improve
readability of the code:

    GREAT -> great
    ROOTGREAT -> rootGreat
    VGREAT -> vGreat
    ROOTVGREAT -> rootVGreat
    SMALL -> small
    ROOTSMALL -> rootSmall
    VSMALL -> vSmall
    ROOTVSMALL -> rootVSmall

The original capitalized are still currently supported but their use is
deprecated.
2018-01-25 09:46:37 +00:00
7bdbab7f4e Rationalize the "pos" function
"pos" now returns 1 if the argument is greater than 0, otherwise it returns 0.
This is consistent with the common mathematical definition of the "pos" function:

https://en.wikipedia.org/wiki/Sign_(mathematics)

However the previous implementation in which 1 was also returned for a 0
argument is useful in many situations so the "pos0" has been added which returns
1 if the argument is greater or equal to 0.  Additionally the "neg0" has been
added which returns 1 if if the argument is less than or equal to 0.
2017-06-22 14:32:18 +01:00
ad92287afc Multi-phase solvers: Improved handling of inflow/outflow BCs in MULES
Avoids slight phase-fraction unboundedness at entertainment BCs and improved
robustness.

Additionally the phase-fractions in the multi-phase (rather than two-phase)
solvers are adjusted to avoid the slow growth of inconsistency ("drift") caused
by solving for all of the phase-fractions rather than deriving one from the
others.
2017-01-17 22:43:47 +00:00
75ea76187b GeometricField::GeometricBoundaryField -> GeometricField::Boundary
When the GeometricBoundaryField template class was originally written it
was a separate class in the Foam namespace rather than a sub-class of
GeometricField as it is now.  Without loss of clarity and simplifying
code which access the boundary field of GeometricFields it is better
that GeometricBoundaryField be renamed Boundary for consistency with the
new naming convention for the type of the dimensioned internal field:
Internal, see commit a25a449c9e

This is a very simple text substitution change which can be applied to
any code which compiles with the OpenFOAM-dev libraries.
2016-04-28 07:22:02 +01:00
a4e2afa4b3 Completed boundaryField() -> boundaryFieldRef()
Resolves bug-report http://www.openfoam.org/mantisbt/view.php?id=1938

Because C++ does not support overloading based on the return-type there
is a problem defining both const and non-const member functions which
are resolved based on the const-ness of the object for which they are
called rather than the intent of the programmer declared via the
const-ness of the returned type.  The issue for the "boundaryField()"
member function is that the non-const version increments the
event-counter and checks the state of the stored old-time fields in case
the returned value is altered whereas the const version has no
side-effects and simply returns the reference.  If the the non-const
function is called within the patch-loop the event-counter may overflow.
To resolve this it in necessary to avoid calling the non-const form of
"boundaryField()" if the results is not altered and cache the reference
outside the patch-loop when mutation of the patch fields is needed.

The most straight forward way of resolving this problem is to name the
const and non-const forms of the member functions differently e.g. the
non-const form could be named:

    mutableBoundaryField()
    mutBoundaryField()
    nonConstBoundaryField()
    boundaryFieldRef()

Given that in C++ a reference is non-const unless specified as const:
"T&" vs "const T&" the logical convention would be

    boundaryFieldRef()
    boundaryFieldConstRef()

and given that the const form which is more commonly used is it could
simply be named "boundaryField()" then the logical convention is

    GeometricBoundaryField& boundaryFieldRef();

    inline const GeometricBoundaryField& boundaryField() const;

This is also consistent with the new "tmp" class for which non-const
access to the stored object is obtained using the ".ref()" member function.

This new convention for non-const access to the components of
GeometricField will be applied to "dimensionedInternalField()" and "internalField()" in the
future, i.e. "dimensionedInternalFieldRef()" and "internalFieldRef()".
2016-04-25 16:16:05 +01:00
287603474a vector::zero -> Zero 2016-04-16 18:34:41 +01:00
7859083246 OpenFOAM: Updated all libraries, solvers and utilities to use the new const-safe tmp
The deprecated non-const tmp functionality is now on the compiler switch
NON_CONST_TMP which can be enabled by adding -DNON_CONST_TMP to EXE_INC
in the Make/options file.  However, it is recommended to upgrade all
code to the new safer tmp by using the '.ref()' member function rather
than the non-const '()' dereference operator when non-const access to
the temporary object is required.

Please report any problems on Mantis.

Henry G. Weller
CFD Direct.
2016-02-26 17:31:28 +00:00
7d192447f0 Boundary conditions: Added extrapolatedCalculatedFvPatchField
To be used instead of zeroGradientFvPatchField for temporary fields for
which zero-gradient extrapolation is use to evaluate the boundary field
but avoiding fields derived from temporary field using field algebra
inheriting the zeroGradient boundary condition by the reuse of the
temporary field storage.

zeroGradientFvPatchField should not be used as the default patch field
for any temporary fields and should be avoided for non-temporary fields
except where it is clearly appropriate;
extrapolatedCalculatedFvPatchField and calculatedFvPatchField are
generally more suitable defaults depending on the manner in which the
boundary values are specified or evaluated.

The entire OpenFOAM-dev code-base has been updated following the above
recommendations.

Henry G. Weller
CFD Direct
2016-02-20 22:44:37 +00:00
10aea96ae5 applications: Update ...ErrorIn -> ...ErrorInFunction
Avoids the clutter and maintenance effort associated with providing the
function signature string.
2015-11-10 17:53:31 +00:00
3d14a632a5 reactingMultiphaseEulerFoam, multiphaseEulerFoam: Correct flux averaging for sub-cycling 2015-10-05 17:43:33 +01:00
cc5f67a0ff reactingMultiphaseEulerFoam: New Euler-Euler multiphase solver
Supporting any number of phases with heat and mass transfer, phase-change and reactions
2015-09-11 15:33:12 +01:00
e5a52c90e8 Update headers 2015-04-29 14:44:53 +01:00
3e2b64c08d MULES: nLimiterIter and smoothLimiter are now user-input via the corresponding fvSolution sub-dict
nLimiterIter: Number of iterations during limiter construction
    3 (default) is sufficient for 3D simulations with a Courant number 0.5 or so
    For larger Courant numbers larger values may be needed but this is
    only relevant for IMULES and CMULES

smoothLimiter: Coefficient to smooth the limiter to avoid "diamond"
    staggering patters seen in regions of low particle phase-fraction in
    fluidised-bed simulations.

    The default is 0 as it is not needed for all simulations.
    A value of 0.1 is appropriate for fluidised-bed simulations.
    The useful range is 0 -> 0.5.
    Values larger than 0.5 may cause excessive smearing of the solution.
2015-04-29 14:37:41 +01:00
446e5777f0 Add the OpenFOAM source tree 2014-12-10 22:40:10 +00:00