Commit Graph

815 Commits

Author SHA1 Message Date
6655627b0d Merge branch 'master' of github.com-OpenFOAM:OpenFOAM/OpenFOAM-dev 2023-07-26 12:35:42 +01:00
c772291a9c engineCompRatio: Added support for specifying the combustion chamber cellSet/Zone
Application
    engineCompRatio

Description
    Calculate the compression ratio of the engine combustion chamber

    If the combustion chamber is not the entire mesh a \c cellSet or
    \c cellZone name of the cells in the combustion chamber can be provided.

Usage
    \b engineCompRatio [OPTION]

      - \par -cellSet \<name\>
        Specify the cellSet name of the combustion chamber

      - \par -cellZone zoneName
        Specify the cellZone name of the combustion chamber
2023-07-24 10:08:07 +01:00
6d36c53788 snappyHexMeshConfig: added '-firstLayerThickness' and '-layerExpansionRatio' options 2023-07-21 17:55:22 +01:00
55e5b17d92 snappyHexMeshConfig: clean surfaces to improve closedness test 2023-07-20 18:08:47 +01:00
a71bbe5c6f snappyHexMeshConfig: write out a meshQualityDict file 2023-07-19 11:43:26 +01:00
afdaf49b4f snappyHexMeshConfig: use implicitFeatures by default
and make '-explicitFeatures' the option to use explicitFeatures. When implicitFeatures
is used, a surfaceFeaturesDict file is not written out to the system directory
2023-07-19 11:38:19 +01:00
31679117a4 snappyHexMeshConfig: write addLayersControls sub-dictionary always 2023-07-19 11:31:05 +01:00
795d408dce extrudeMesh, splitMeshRegions: Removed the redundant writing of dummy fvSchemes and fvSolution files 2023-07-15 21:56:07 +01:00
472025d35b Merge branch 'master' of github.com:OpenFOAM/OpenFOAM-dev 2023-07-13 16:20:36 +01:00
50017eeb80 snappyHexMeshConfig: removed resizing of bounds specified with '-bounds' option 2023-07-13 16:20:24 +01:00
6e64865cfd snappyHexMeshConfig: Fix for Gcc 5.4, and spelling corrections 2023-07-13 16:20:05 +01:00
c4fbbd440b snappyHexMeshConfig: fixed '-defaultPatch' option and spelling errors 2023-07-13 16:18:47 +01:00
c5b7ee0b85 Corrected typos 2023-07-11 16:47:25 +01:00
83465133d6 Merge branch 'master' of github.com-OpenFOAM:OpenFOAM/OpenFOAM-dev 2023-07-11 15:24:56 +01:00
805a7de6d9 dictionary: Removed support for the deprecated "dot" syntax
to simplify maintenance and extension of the current "slash" syntax.
2023-07-11 15:22:44 +01:00
f5485c4609 snappyHexMeshConfig: Fix for Gcc 5.4, and spelling corrections 2023-07-11 12:17:07 +01:00
2b3b820c90 Corrected duplicate word and it's typos 2023-07-11 11:02:47 +01:00
c2552978a3 snappyHexMeshConfig: utility to preconfigure input files for snappyHexMesh,
including blockMeshDict, surfaceFeaturesDict and snappyHexMeshDict, based on the
case surface geometry.

Description
    Preconfigures blockMeshDict, surfaceFeaturesDict and snappyHexMeshDict
    files based on the case surface geometry files.

    Starting from a standard OpenFOAM case, this utility locates surface
    geometry files, e.g. OBJ, STL format, in the constant/geometry directory.
    It writes out the configuration files for mesh generation with
    snappyHexMesh based on assumptions which can be overridden by options on
    the command line.

    The utility processes the surface geometry files, attempting to anticipate
    their intended purpose, trying in particular to recognise whether the
    domain represents an external or internal flow. If there is a surface
    which is closed, and is either single or surrounds all other surfaces,
    then it is assumed that it forms the external boundary of an internal
    flow. This assumption is overridden if the bounds of the background mesh
    are specified using the '-bounds' option and they are more than 50% larger
    than the surface bounds.

    Surfaces which form boundaries of the domain may contain named regions
    that are intended to become patches in the final mesh. Any surface region
    whose name begins with 'inlet' or 'outlet' will become a patch of the same
    name in the final mesh. On an external surface (for an internal flow),
    regions can be identified as inlets and outlets using the '-inletRegions'
    and '-outletRegions' options, respectively. When either option specifies a
    single region, the resulting patch name will be specifically 'inlet' or
    'outlet', respectively. Surfaces which are contained within the domain,
    which do not surround or intersect other surfaces, are assumed by default
    to be wall patches. Any closed surface which surrounds another (but not an
    external surface) is used to form a cellZone within the mesh. Any surface
    can be specifically identified as a cellZone with the '-cellZones' option,
    with the additional '-baffles' and '-rotatingZones' options available to
    assign a surface to a more specific use.

    The background mesh for snappyHexMesh is a single block generated by
    blockMesh, configured using a blockMeshDict file. The block bounds are
    automatically calculated, but can be overridden by the '-bounds'
    option. The number of cells is calculated to produce a fairly small
    prototype mesh. The cell density can be overridden by the '-nCells' option
    or can be scaled up by an integer factor using the '-refineBackground'
    option. When the background mesh is required to form patches in the final
    mesh, e.g. for an external flow, the user can specify the names and types
    of the patches corresponding to the six block faces using options such as
    '-xMinPatch', '-xMaxPatch', etc. The name and type of the default patch,
    formed from block faces which are not configured, can also be specified
    with the '-defaultPatch' option. The utility provides placeholder entries
    for all block faces unless the '-clearBoundary' option is used. A special
    '-cylindricalBackground' option generates a cylindrical background mesh,
    oriented along the z-axis along x = y = 0.

    The snappyHexMesh configuration is generated automatically, applying a set
    of defaults to the main configuration parameters. By default, explicit
    feature capturing is configured, for which a surfaceFeaturesDict file is
    written for the user to generate the features files with the
    surfaceFeatures utility. Implicit feature capturing can alternatively be
    selected with the '-implicitFeatures' option. Refinement levels can be
    controlled with a range of options including: '-refinementLevel' for the
    baseline refinement level; '-refinementSurfaces' for levels on specific
    surfaces; '-refinementRegions' for levels inside specific surfaces;
    '-refinementBoxes' for quick, box-shaped refinement regions specified by
    min and max bounds; '-refinementDists' for distance-based refinement; and
    '-nCellsBetweenLevels' to control the transition between refinement
    levels. A '-layers' option specifies additional layers of cells at wall
    boundaries. The insidePoint parameter is set to '(0 0 0)' by default but
    can be overridden using the '-insidePoint' option.
2023-07-07 12:32:14 +01:00
e0fddef530 foamDictionary: Corrected documentation formatting for Doxygen 2023-07-06 23:07:31 +01:00
835ef31a1d foamDictionary: Moved the dictionary tests/examples to applications/test/dictionary 2023-07-03 13:38:37 +01:00
d5f038493a Make disallowed constructors and assignment operators public 2023-06-30 22:16:37 +01:00
faf0dd2e35 Ensure delete modifier is applied to disallowed constructors and assignment operators 2023-06-30 17:25:07 +01:00
0657826ab9 Replaced all remaining addTimeOptions.H includes with the more flexible timeSelector 2023-06-23 15:24:06 +01:00
3460364ef2 foamToC: Added -solvers option
which lists the solver modules:

Contents of table solver:
    XiFluid                                 libXiFluid.so
    compressibleMultiphaseVoF               libcompressibleMultiphaseVoF.so
    compressibleVoF                         libcompressibleVoF.so
    film                                    libfilm.so
    fluid                                   libfluid.so
    functions                               libfunctions.so
    incompressibleDenseParticleFluid        libincompressibleDenseParticleFluid.so
    incompressibleDriftFlux                 libincompressibleDriftFlux.so
    incompressibleFluid                     libincompressibleFluid.so
    incompressibleMultiphaseVoF             libincompressibleMultiphaseVoF.so
    incompressibleVoF                       libincompressibleVoF.so
    isothermalFilm                          libisothermalFilm.so
    isothermalFluid                         libisothermalFluid.so
    movingMesh                              libmovingMesh.so
    multicomponentFluid                     libmulticomponentFluid.so
    multiphaseEuler                         libmultiphaseEuler.so
    shockFluid                              libshockFluid.so
    solid                                   libsolid.so
    solidDisplacement                       libsolidDisplacement.so

This is equivalent to

    foamToC -table solver
2023-06-20 13:06:40 +01:00
04dd989911 Time: Removed graphFormat
setFormat no longer defaults to the value of graphFormat optionally set in
controlDict and must be set in the functionObject dictionary.

boundaryFoam, financialFoam and pdfPlot still require a graphFormat entry in
controlDict but this is now read directly rather than by Time.
2023-06-16 14:51:30 +01:00
561e20036b foamToC: Updated documentation 2023-06-16 13:55:15 +01:00
602d6b20d0 foamToC: the -allLibs option is now the default, -noLibs disables loading all libraries
the -solver option also disables the default loading of all libraries, instead
loading just the specified solver module library and dependencies.

It is generally more useful to load all the libraries when searching for model,
boundary condition etc. rather than having to list specific libraries to search
unless only the contents of the standard libraries loaded into a solver module
are to be searched, in which case the -solver option can be used.
2023-06-14 19:25:00 +01:00
618d9d33b2 controlDict: the optional graphFormat entry is now used as the default for all setFormat entries
Foam::graph superseded by the more general Foam::setWriter reducing code
maintenance overhead, simplifying usage and further development.
2023-06-12 17:14:37 +01:00
1e9e0c141b checkMesh: Added the region name to the postProcessing directory for the output from writeSets option 2023-06-12 12:21:34 +01:00
5233335924 thermophysicalModels: Permit wildcard names of thermo dictionaries
This can be useful when reusing thermo configurations across multiple
setups. In one simulation, the fluid might be entirely air, and in
another there might be additional pollutant or fuel species. This could
be defined without changing the species' thermo enties as follows:

    "(mixture|air)"
    {
        specie
        {
            molWeight   28.9;
        }
        thermodynamics
        {
            Hf          0;
            Cv          724.8;
        }
        transport
        {
            mu          1.84e-05;
            Pr          0.7;
        }
    }

This was semi-supported before, but it lead to the wrong name (i.e., the
wildcard string) being stored in the base specie class. Now the name is
passed through the thermo constructors, so it is always correct.
2023-06-08 16:00:14 +01:00
163d1b5fbb Reaction: Removed unnecessary construction of thermo database 2023-06-07 16:59:56 +01:00
08544446e8 Time, functionObjectList: Refactored to simplify construction and switching-off functionObjects 2023-06-06 08:17:52 +01:00
db7ea4c3db foamToC: Added support for pattern searching using a regular expression
e.g. the simple exact match search

    foamToC -allLibs -search VoFTurbulenceDamping

generates:

    VoFTurbulenceDamping is in table
        fvModel                                 libVoFTurbulenceDamping.so

but the regular expression search

    foamToC -allLibs -search "VoF.*"

generates the results for all names in all tables containing the sub-string "VoF":

    VoFCavitation is in table
        fvModel                                 libVoFCavitation.so
    VoFSolidificationMeltingSource is in table
        fvModel                                 libVoFSolidificationMeltingSource.so
    VoFClouds is in table
        fvModel                                 libVoFClouds.so
    VoFFilmTransfer is in table
        fvModel                                 libfilmVoFTransfer.so
    VoFTurbulenceDamping is in table
        fvModel                                 libVoFTurbulenceDamping.so
2023-06-02 14:31:06 +01:00
ca72b0a963 fvPatchFields: Removed all fvPatchFields requiring user specified data from the null-constructor table
This avoids potential hidden run-time errors caused by solvers running with
boundary conditions which are not fully specified.  Note that "null-constructor"
here means the constructor from patch and internal field only, no data is
provided.

Constraint and simple BCs such as 'calculated', 'zeroGradient' and others which
do not require user input to fully specify their operation remain on the
null-constructor table for the construction of fields with for example all
'calculated' or all 'zeroGradient' BCs.

A special version of the 'inletOutlet' fvPatchField named 'zeroInletOutlet' has
been added in which the inlet value is hard-coded to zero which allows this BC
to be included on the null-constructor table.  This is useful for the 'age'
functionObject to avoid the need to provide the 'age' volScalarField at time 0
unless special inlet or outlet BCs are required.  Also for isothermalFilm in
which the 'alpha' field is created automatically from the 'delta' field if it is
not present and can inherit 'zeroInletOutlet' from 'delta' if appropriate.  If a
specific 'inletValue' is require or other more complex BCs then the 'alpha'
field file must be provided to specify these BCs as before.

Following this improvement it will now be possible to remove the
null-constructors from all fvPatchFields not added to the null-constructor
table, which is most of them, thus reducing the amount of code and maintenance
overhead and making easier and more obvious to write new fvPatchField types.
2023-05-27 16:56:10 +01:00
fec6705dc9 OpenFOAM: Updated for gcc-13
gcc-13 has new code checking and warning mechanisms which are useful but not
entirely robust and produce many false positives, particularly with respect to
local references:

    warning: possibly dangling reference to a temporary

This commit resolves many of the new warning messages but the above false
warnings remain.  It is possible to switch off this warning but as it also
provides some useful checks it is currently left on.
2023-05-23 10:47:56 +01:00
cae41959dd distributions: Generalised statistical distributions
This new class hierarchy replaces the distributions previously provided
by the Lagrangian library.

All distributions (except fixedValue) now require a "size exponent", Q,
to be specified along with their other coefficients. If a distribution's
CDF(x) (cumulative distribution function) represents what proportion of
the distribution takes a value below x, then Q determines what is meant
by "proportion":

- If Q=0, then "proportion" means the number of sampled values expected
  to be below x divided by the total number of sampled values.

- If Q=3, then "proportion" means the expected sum of sampled values
  cubed for values below x divided by the total sum of values cubed. If
  x is a length, then this can be interpreted as a proportion of the
  total volume of sampled objects.

- If Q=2, and x is a length, then the distribution might represent the
  proportion of surface area, and so on...

In addition to the user-specification of Q defining what size the given
distribution relates to, an implementation that uses a distribution can
also programmatically define a samplingQ to determine what sort of
sample is being constructed; whether the samples should have an equal
number (sampleQ=0), volume (sampleQ=3), area (sampleQ=2), etc...

A number of fixes to the distributions have been made, including fixing
some fundamental bugs in the returned distribution of samples, incorrect
calculation of the distribution means, renaming misleadingly named
parameters, and correcting some inconsistencies in the way in which
tabulated PDF and CDF data was processed. Distributions no longer
require their parameters to be defined in a sub-dictionary, but a
sub-dictionary is still supported for backwards compatibility.

The distributions can now generate their PDF-s as well as samples, and a
test application has been added (replacing two previous applications),
which thoroughly checks consistency between the PDF and the samples for
a variety of combinations of values of Q and sampleQ.

Backwards incompatible changes are as follows:

- The standard deviation keyword for the normal (and multi-normal)
  distribution is now called 'sigma'. Previously this was 'variance',
  which was misleading, as the value is a standard deviation.

- The 'massRosinRammler' distribution has been removed. This
  functionality is now provided by the standard 'RosinRammler'
  distributon with a Q equal to 0, and a sampleQ of 3.

- The 'general' distribution has been split into separate distributions
  based on whether PDF or CDF data is provided. These distributions are
  called 'tabulatedDensity' and 'tabulatedCumulative', respectively.
2023-05-11 15:42:17 +01:00
74a63a08e4 mappedExtrudedPatchBase: Support patchToPatch coupling
This completes commit 381e0921 and permits patches on the "top" of
extruded regions to determine the point locations opposite as well as
the face centres and areas. This means that patches with dissimilar
meshes can now be coupled via the patchToPatch interpolation engine.

A few fixes have also been applied to extrudeToRegionMesh to make the
intrude option compatibile with extrusion into internal faces and
between opposing zones/sets/patches. The 'shadow' entries used for
extrusion inbetween opposing zones/sets/patches have also been renamed
to 'opposite' for consistency with the patch names and patch types
entries; e.g.,

    faceZones           (fz1 fz3);
    oppositeFaceZones   (fz2 fz4); // <-- was 'faceZonesShadow'

    faceSets            (fs1 fs3);
    oppositeFaceSets    (fs2 fs4); // <-- was 'faceSetsShadow'

    patches             (p1 p3);
    oppositePatches     (p2 p4); // <-- was 'patchesShadow'
2023-05-09 11:06:40 +01:00
4b91dc790f foamToC: Added -listAllLibs option
Now the -allLibs option loads all the libraries without listing them to reduce
the amount of output when it is not needed and the new -listAllLibs option loads
all the libraries and lists them as they are loaded which may be useful to find
libraries which do not load due to duplicate entries for example.
2023-05-04 10:54:12 +01:00
f850266cdf extrudeToRegionMesh: Added 'intrude' option
With the new film implementation the single cell layer film region is extruded
into (overlapping with) the primary/fluid region which can now be generated with
extrudeToRegionMesh using the new 'intrude' option, e.g. for the
tutorials/modules/multiRegion/film/splashPanel case the extrudeToRegionMeshDict
contains:

region          film;

patches         (film);

extrudeModel    linearNormal;

intrude         yes;

adaptMesh       no;

patchTypes      (mappedExtrudedWall);
patchNames      (film);

regionPatchTypes   (filmWall);
regionPatchNames   (wall);

regionOppositePatchTypes    (mappedFilmSurface);
regionOppositePatchNames    (surface);

nLayers         1;

expansionRatio  1;

linearNormalCoeffs
{
    thickness       0.002;
}
2023-05-02 17:22:03 +01:00
8f3d044b6a filmToVoFTransfer: Updated to lookup VoFtoFilmTransfer from any position in the fvModels 2023-04-26 21:01:30 +01:00
5e8d1ff99e createBaffles: Fixed owner/neighbour indexing bug when operating in parallel
Resolves bug report https://bugs.openfoam.org/view.php?id=3970
2023-04-13 17:09:29 +01:00
d5023b907f applications/utilities: Replaced fvCFD.H with appropriate include files 2023-04-01 18:59:28 +01:00
87b606c45e foamDictionary.C: fixed typo 2023-03-14 11:33:17 +00:00
c5107bc42f surfaceCheck: make the -verbose option do something 2023-03-10 23:05:50 +00:00
67e692b5a8 foamRun, foamMultiRun: Pre-load the solver libraries before the mesh/meshes are constructed
to ensure that any solver-specific patch types are available before mesh construction.
2023-03-07 13:18:33 +00:00
25dd524c84 generic.*Patch: Moved to new genericPatches library
genericPatches is linked into mesh generation and manipulation utilities but not
solvers so that the solvers now check for the availability of the specified
patch types.  Bugs in the tutorials exposed by this check have been corrected.
2023-03-03 09:03:47 +00:00
390c588cd4 mappedExtrudedPatchBase: New base class for extruded patches
mappedExtrudedPolyPatch and mappedExtrudedWallPolyPatch are now derived from mappedExtrudedPatchBase
2023-03-02 20:25:22 +00:00
c7c8c0fa46 extrudeToRegionMesh: Added options to set the name and type of the generated patches
e.g. in extrudeToRegionMeshDict:

// Generate the region named film
region          film;

// from the patch extrudeWall
patches         (extrudeWall);

// generating mapped patches for the extruded region
adaptMesh       yes;

// New options:

// Set the type of the mapped patch on the existing mesh to mappedWall ...
patchTypes      (mappedWall);

// ... and name to wall
patchNames      (wall);

// Set the type of the mapped patch on the region mesh to mappedFilmWall ...
regionPatchTypes   (mappedFilmWall);

// ... and name to wall
regionPatchNames   (wall);

// Set the type of the opposite patch on the region mesh to empty ...
regionOppositePatchTypes    (empty);

// ... and name to empty
regionOppositePatchNames    (empty);

All the above entries are optional and if not present the previous behaviour is
reproduced.
2023-02-28 15:43:37 +00:00
cd5acd5ed2 foamToVtk: Changed -poly option to -polyhedra
The new option takes a value indicating which cell types should be
written out as polyhedra. The values are as follows:

      none: No polyhedral cells are written. Cells which match specific
            shapes (hex, pyramid, prism, ...) are written as their
            corresponding VTK cell types. Arbitrary polyhedral cells
            that do not match a specific shape are decomposed into
            tetrahedra.

 polyhedra: Only arbitrary polyhedral cells are written as a VTK
            polyhedron. Cells that match specific shapes are written as
            their corresponding VTK cell types.

       all: All cells are written as a VTK polyhedron.

The default is 'none', which retains the previous default behaviour.
2023-02-17 15:11:20 +00:00
f95eb5fd11 meshToMesh, mapFieldsPar: Rationalisation
Cell-to-cell interpolation has been moved to a hierarchy separate from
meshToMesh, called cellsToCells. The meshToMesh class is now a
combination of a cellsToCells object and multiple patchToPatch objects.
This means that when only cell-to-cell interpolation is needed a basic
cellsToCells object can be selected.

Cell-to-cell and vol-field-to-vol-field interpolation now has two well
defined sets of functions, with a clear distinction in how weights that
do not sum to unity are handled. Non-unity weights are either
normalised, or a left-over field is provided with which to complete the
weighted sum.

The left-over approach is now consistently applied in mapFieldsPar,
across both the internal and patch fields, if mapping onto an existing
field in the target case. Warning are now generated for invalid
combinations of settings, such as mapping between inconsistent meshes
without a pre-existing target field.

All mapping functions now take fields as const references and return tmp
fields. This avoids the pattern in which non-const fields are provided
which relate to the source, and at some point in the function transfer
to the target. This pattern is difficult to reason about and does not
provide any actual computational advantage, as the fields invariably get
re-allocated as part of the process anyway.

MeshToMesh no longer stores the cutting patches. The set of cutting
patches is not needed anywhere except at the point of mapping a field,
so it is now supplied to the mapping functions as an argument.

The meshToMesh topology changer no longer supports cutting patch
information. This did not previously work. Cutting patches either get
generated as calculated, or they require a pre-existing field to specify
their boundary condition. Neither of these options is suitable for a
run-time mesh change.

More code has been shared with patchToPatch, reducing duplication.
2023-02-16 11:12:36 +00:00