for the multiphaseEuler solver module, replacing the more specific
uniformFixedMultiphaseHeatFluxFvPatchScalarField as it provide equivalent
functionality if the heat-flux q is specified.
multiphaseExternalTemperatureFvPatchScalarField is derived from the refactored
and generalised externalTemperatureFvPatchScalarField, overriding the
getKappa member function to provide the multiphase equivalents of kappa and
other heat transfer properties. All controls for
multiphaseExternalTemperatureFvPatchScalarField are the same as for
externalTemperatureFvPatchScalarField:
Class
Foam::externalTemperatureFvPatchScalarField
Description
This boundary condition applies a heat flux condition to temperature
on an external wall. Heat flux can be specified in the following ways:
- Fixed power: requires \c Q
- Fixed heat flux: requires \c q
- Fixed heat transfer coefficient: requires \c h and \c Ta
where:
\vartable
Q | Power Function1 of time [W]
q | Heat flux Function1 of time [W/m^2]
h | Heat transfer coefficient Function1 of time [W/m^2/K]
Ta | Ambient temperature Function1 of time [K]
\endvartable
Only one of \c Q or \c q may be specified, if \c h and \c Ta are also
specified the corresponding heat-flux is added.
If the heat transfer coefficient \c h is specified an optional thin thermal
layer resistances can also be specified through thicknessLayers and
kappaLayers entries.
The patch thermal conductivity \c kappa is obtained from the region
thermophysicalTransportModel so that this boundary condition can be applied
directly to either fluid or solid regions.
Usage
\table
Property | Description | Required | Default value
Q | Power [W] | no |
q | Heat flux [W/m^2] | no |
h | Heat transfer coefficient [W/m^2/K] | no |
Ta | Ambient temperature [K] | if h is given |
thicknessLayers | Layer thicknesses [m] | no |
kappaLayers | Layer thermal conductivities [W/m/K] | no |
relaxation | Relaxation for the wall temperature | no | 1
emissivity | Surface emissivity for radiative flux to ambient | no | 0
qr | Name of the radiative field | no | none
qrRelaxation | Relaxation factor for radiative field | no | 1
\endtable
Example of the boundary condition specification:
\verbatim
<patchName>
{
type externalTemperature;
Ta constant 300.0;
h uniform 10.0;
thicknessLayers (0.1 0.2 0.3 0.4);
kappaLayers (1 2 3 4);
value $internalField;
}
\endverbatim
See also
Foam::mixedFvPatchScalarField
Foam::Function1
This provides a smooth solution but it is not clear if this is more accurate
than running the cellMomentum p-U algorithm which generates complex transients
in the solution.
Simplifications have been made where possible, as permitted by the new
$<type>var syntax. Duplication has been reduced in similar blockMesh
files (e.g., sloshingTank cases). Settings that cannot practically be
changed have been hard-coded (e.g., angle in the mixerVessel2D
blockMeshDict). The rotor2D blockMeshDict has been centralised and
extended to work with an arbitrary number of rotor blades.
If the libs entry is not provided and the name of the library containing the
functionObject, fvModel or fvConstraint corresponds to the type specified the
corresponding library is automatically loaded, e.g. to apply the
VoFTurbulenceDamping fvModel to an incompressibleVoF simulation the following
will load the libVoFTurbulenceDamping.so library automatically and instantiate
the fvModel:
turbulenceDamping
{
type VoFTurbulenceDamping;
delta 1e-4;
}