the previous naming tan1, tan2, normal was non-intuitive and very confusing.
It was not practical to maintain backward compatibility but all tutorials and
example refineMeshDict files have been updated to provide examples of the
change.
Originally the only supported geometry specification were triangulated surfaces,
hence the name of the directory: constant/triSurface, however now that other
surface specifications are supported and provided it is much more logical that
the directory is named accordingly: constant/geometry. All tutorial and
template cases have been updated.
Note that backward compatibility is provided such that if the constant/geometry
directory does not exist but constant/triSurface does then the geometry files
are read from there.
foamDictionary executions are now wrapped by runApplication like any
other execution so that they do not print during a test loop.
foamDictionary does not produce a conforming log, however, so
log.foamDictionary has been filtered out of the formation of the test
loop report so that false failures are not reported.
A new run-time selectable interface compression scheme framework has been added
to the two-phase VoF solvers to provide greater flexibility, extensibility and
more consistent user-interface. The previously built-in interface compression
is now in the standard run-time selectable surfaceInterpolationScheme
interfaceCompression:
Class
Foam::interfaceCompression
Description
Interface compression corrected scheme, based on counter-gradient
transport, to maintain sharp interfaces during VoF simulations.
The interface compression is applied to the face interpolated field from a
suitable 2nd-order shape-preserving NVD or TVD scheme, e.g. vanLeer or
vanAlbada. A coefficient is supplied to control the degree of compression,
with a value of 1 suitable for most VoF cases to ensure interface integrity.
A value larger than 1 can be used but the additional compression can bias
the interface to follow the mesh more closely while a value smaller than 1
can lead to interface smearing.
Example:
\verbatim
divSchemes
{
.
.
div(phi,alpha) Gauss interfaceCompression vanLeer 1;
.
.
}
\endverbatim
The separate scheme for the interface compression term "div(phirb,alpha)" is no
longer required or used nor is the compression coefficient cAlpha in fvSolution
as this is now part of the "div(phi,alpha)" scheme specification as shown above.
Backward-compatibility is provided by checking the specified "div(phi,alpha)"
scheme against the known interface compression schemes and if it is not one of
those the new interfaceCompression scheme is used with the cAlpha value
specified in fvSolution.
More details can be found here:
https://cfd.direct/openfoam/free-software/multiphase-interface-capturing
Henry G. Weller
CFD Direct Ltd.
providing the shear-stress term in the momentum equation for incompressible and
compressible Newtonian, non-Newtonian and visco-elastic laminar flow as well as
Reynolds averaged and large-eddy simulation of turbulent flow.
The general deviatoric shear-stress term provided by the MomentumTransportModels
library is named divDevTau for compressible flow and divDevSigma (sigma =
tau/rho) for incompressible flow, the spherical part of the shear-stress is
assumed to be either included in the pressure or handled separately. The
corresponding stress function sigma is also provided which in the case of
Reynolds stress closure returns the effective Reynolds stress (including the
laminar contribution) or for other Reynolds averaged or large-eddy turbulence
closures returns the modelled Reynolds stress or sub-grid stress respectively.
For visco-elastic flow the sigma function returns the effective total stress
including the visco-elastic and Newtonian contributions.
For thermal flow the heat-flux generated by thermal diffusion is now handled by
the separate ThermophysicalTransportModels library allowing independent run-time
selection of the heat-flux model.
During the development of the MomentumTransportModels library significant effort
has been put into rationalising the components and supporting libraries,
removing redundant code, updating names to provide a more logical, consistent
and extensible interface and aid further development and maintenance. All
solvers and tutorials have been updated correspondingly and backward
compatibility of the input dictionaries provided.
Henry G. Weller
CFD Direct Ltd.
Following the generalisation of the TurbulenceModels library to support
non-Newtonian laminar flow including visco-elasticity and extensible to other
form of non-Newtonian behaviour the name TurbulenceModels is misleading and does
not properly represent how general the OpenFOAM solvers now are. The
TurbulenceModels now provides an interface to momentum transport modelling in
general and the plan is to rename it MomentumTransportModels and in preparation
for this the turbulenceProperties dictionary has been renamed momentumTransport
to properly reflect its new more general purpose.
The old turbulenceProperties name is supported for backward-compatibility.
renaming the legacy keywords
RASModel -> model
LESModel -> model
laminarModel -> model
which is simpler and clear within the context in which they are specified, e.g.
RAS
{
model kOmegaSST;
turbulence on;
printCoeffs on;
}
rather than
RAS
{
RASModel kOmegaSST;
turbulence on;
printCoeffs on;
}
The old keywords are supported for backward compatibility.
These cases now check for a mesh in geometrically identical cases and
copy rather than re-generate if possible. This reduces the run-time of
the test loop by about 20 minutes.
This is to make it clear that the value supplied is the scalar mean
velocity normal to the patch, and to distinguish it from other instances
of the keyword "UMean" which take a vector quantity.