Commit Graph

2 Commits

Author SHA1 Message Date
4bd90bc969 rhoThermo: Renamed thermo:rho -> rho
The thermodynamic density field is now named "rho" by default and only renamed
"thermo:rho" by solvers that create and maintain a separate continuity density
field which is named "rho".  This change significantly simplifies and
standardises the specification of schemes and boundary conditions requiring
density as it is now always named "rho" or "rho.<phase>" unless under some very
unusual circumstances the thermodynamic rather than continuity density is
required for a solver maintaining both.

The advantage of this change is particularly noticeable for multiphase
simulations in which each phase has its own density now named "rho.<phase>"
rather than "thermo:rho.<phase>" as separate phase continuity density fields are
not required so for multiphaseEulerFoam the scheme specification:

    "div\(alphaRhoPhi.*,\(p\|thermo:rho.*\)\)" Gauss limitedLinear 1;

is now written:

    "div\(alphaRhoPhi.*,\(p\|rho.*\)\)" Gauss limitedLinear 1;
2022-10-28 02:19:13 +01:00
f771192d5c solvers::compressibleVoF: New solver module for compressible two-phase flow with VoF
executed with foamRun for single region simulations of foamMultiRun for
multi-region simulations.  Replaces compressibleInterFoam and all the
corresponding tutorials have been updated and moved to
tutorials/modules/compressibleVoF.

Class
    Foam::solvers::compressibleVoF

Description
    Solver module for for 2 compressible, non-isothermal immiscible fluids
    using a VOF (volume of fluid) phase-fraction based interface capturing
    approach, with optional mesh motion and mesh topology changes including
    adaptive re-meshing.

    The momentum and other fluid properties are of the "mixture" and a single
    momentum equation is solved.

    Either mixture or two-phase transport modelling may be selected.  In the
    mixture approach a single laminar, RAS or LES model is selected to model the
    momentum stress.  In the Euler-Euler two-phase approach separate laminar,
    RAS or LES selected models are selected for each of the phases.

    Uses the flexible PIMPLE (PISO-SIMPLE) solution for time-resolved and
    pseudo-transient and steady simulations.

    Optional fvModels and fvConstraints are provided to enhance the simulation
    in many ways including adding various sources, Lagrangian
    particles, surface film etc. and constraining or limiting the solution.

SourceFiles
    compressibleVoF.C

See also
    Foam::solvers::fluidSolver
2022-09-01 17:51:18 +01:00