used to check the existence of and open an object file, read and check the
header without constructing the object.
'typeIOobject' operates in an equivalent and consistent manner to 'regIOobject'
but the type information is provided by the template argument rather than via
virtual functions for which the derived object would need to be constructed,
which is the case for 'regIOobject'.
'typeIOobject' replaces the previous separate functions 'typeHeaderOk' and
'typeFilePath' with a single consistent interface.
to provide a single consistent code and user interface to the specification of
physical properties in both single-phase and multi-phase solvers. This redesign
simplifies usage and reduces code duplication in run-time selectable solver
options such as 'functionObjects' and 'fvModels'.
* physicalProperties
Single abstract base-class for all fluid and solid physical property classes.
Physical properties for a single fluid or solid within a region are now read
from the 'constant/<region>/physicalProperties' dictionary.
Physical properties for a phase fluid or solid within a region are now read
from the 'constant/<region>/physicalProperties.<phase>' dictionary.
This replaces the previous inconsistent naming convention of
'transportProperties' for incompressible solvers and
'thermophysicalProperties' for compressible solvers.
Backward-compatibility is provided by the solvers reading
'thermophysicalProperties' or 'transportProperties' if the
'physicalProperties' dictionary does not exist.
* phaseProperties
All multi-phase solvers (VoF and Euler-Euler) now read the list of phases and
interfacial models and coefficients from the
'constant/<region>/phaseProperties' dictionary.
Backward-compatibility is provided by the solvers reading
'thermophysicalProperties' or 'transportProperties' if the 'phaseProperties'
dictionary does not exist. For incompressible VoF solvers the
'transportProperties' is automatically upgraded to 'phaseProperties' and the
two 'physicalProperties.<phase>' dictionary for the phase properties.
* viscosity
Abstract base-class (interface) for all fluids.
Having a single interface for the viscosity of all types of fluids facilitated
a substantial simplification of the 'momentumTransport' library, avoiding the
need for a layer of templating and providing total consistency between
incompressible/compressible and single-phase/multi-phase laminar, RAS and LES
momentum transport models. This allows the generalised Newtonian viscosity
models to be used in the same form within laminar as well as RAS and LES
momentum transport closures in any solver. Strain-rate dependent viscosity
modelling is particularly useful with low-Reynolds number turbulence closures
for non-Newtonian fluids where the effect of bulk shear near the walls on the
viscosity is a dominant effect. Within this framework it would also be
possible to implement generalised Newtonian models dependent on turbulent as
well as mean strain-rate if suitable model formulations are available.
* visosityModel
Run-time selectable Newtonian viscosity model for incompressible fluids
providing the 'viscosity' interface for 'momentumTransport' models.
Currently a 'constant' Newtonian viscosity model is provided but the structure
supports more complex functions of time, space and fields registered to the
region database.
Strain-rate dependent non-Newtonian viscosity models have been removed from
this level and handled in a more general way within the 'momentumTransport'
library, see section 'viscosity' above.
The 'constant' viscosity model is selected in the 'physicalProperties'
dictionary by
viscosityModel constant;
which is equivalent to the previous entry in the 'transportProperties'
dictionary
transportModel Newtonian;
but backward-compatibility is provided for both the keyword and model
type.
* thermophysicalModels
To avoid propagating the unnecessary constructors from 'dictionary' into the
new 'physicalProperties' abstract base-class this entire structure has been
removed from the 'thermophysicalModels' library. The only use for this
constructor was in 'thermalBaffle' which now reads the 'physicalProperties'
dictionary from the baffle region directory which is far simpler and more
consistent and significantly reduces the amount of constructor code in the
'thermophysicalModels' library.
* compressibleInterFoam
The creation of the 'viscosity' interface for the 'momentumTransport' models
allows the complex 'twoPhaseMixtureThermo' derived from 'rhoThermo' to be
replaced with the much simpler 'compressibleTwoPhaseMixture' derived from the
'viscosity' interface, avoiding the myriad of unused thermodynamic functions
required by 'rhoThermo' to be defined for the mixture.
Same for 'compressibleMultiphaseMixture' in 'compressibleMultiphaseInterFoam'.
This is a significant improvement in code and input consistency, simplifying
maintenance and further development as well as enhancing usability.
Henry G. Weller
CFD Direct Ltd.
The MomentumTransportModels library now builds of a standard set of
phase-incompressible and phase-compressible models. This replaces most
solver-specific builds of these models.
This has been made possible by the addition of a new
"dynamicTransportModel" interface, from which all transport classes used
by the momentum transport models now derive. For the purpose of
disambiguation, the old "transportModel" has also been renamed
"kinematicTransportModel".
This change has been made in order to create a consistent definition of
phase-incompressible and phase-compressible MomentumTransportModels,
which can then be looked up by functionObjects, fvModels, and similar.
Some solvers still build specific momentum transport models, but these
are now in addition to the standard set. The solver does not build all
the models it uses.
There are also corresponding centralised builds of phase dependent
ThermophysicalTransportModels.
SLGThermo has been moved to lagrangian, which still depends on it, pending
complete removal and replacement with a more rational interface to the carrier
phase thermodynamics.
The new fvModels is a general interface to optional physical models in the
finite volume framework, providing sources to the governing conservation
equations, thus ensuring consistency and conservation. This structure is used
not only for simple sources and forces but also provides a general run-time
selection interface for more complex models such as radiation and film, in the
future this will be extended to Lagrangian, reaction, combustion etc. For such
complex models the 'correct()' function is provided to update the state of these
models at the beginning of the PIMPLE loop.
fvModels are specified in the optional constant/fvModels dictionary and
backward-compatibility with fvOption is provided by reading the
constant/fvOptions or system/fvOptions dictionary if present.
The new fvConstraints is a general interface to optional numerical constraints
applied to the matrices of the governing equations after construction and/or to
the resulting field after solution. This system allows arbitrary changes to
either the matrix or solution to ensure numerical or other constraints and hence
violates consistency with the governing equations and conservation but it often
useful to ensure numerical stability, particularly during the initial start-up
period of a run. Complex manipulations can be achieved with fvConstraints, for
example 'meanVelocityForce' used to maintain a specified mean velocity in a
cyclic channel by manipulating the momentum matrix and the velocity solution.
fvConstraints are specified in the optional system/fvConstraints dictionary and
backward-compatibility with fvOption is provided by reading the
constant/fvOptions or system/fvOptions dictionary if present.
The separation of fvOptions into fvModels and fvConstraints provides a rational
and consistent separation between physical and numerical models which is easier
to understand and reason about, avoids the confusing issue of location of the
controlling dictionary file, improves maintainability and easier to extend to
handle current and future requirements for optional complex physical models and
numerical constraints.
A number of fvOptions that apply to a user-derined field can now
automatically work what primitive type they apply to. These options can
apply to any field type, and in some cases even multiple fields of
differing type. Example usage of the options to which this change
applies are shown below:
codedSource1
{
type codedSource;
name codedSource1;
field h;
...
}
fixedValueConstraint1
{
type fixedValueConstraint;
fieldValues
{
R (1 0 0 1 0 1);
epsilon 150;
}
...
}
phaseLimitStabilization11
{
type phaseLimitStabilization;
field sigma.liquid;
...
}
Previously to apply to a given type, these options had to be selected
with the name of the type prepended to the option name (e.g., "type
symmTensorPhaseLimitStabilization;") and those that operated on multiple
fields were restricted to those fields being of the same type.
A number of other options have had improvements made to their handling
of user specification of fields. Where possible, the option will now
attempt to work out what field the option applies to automatically. The
following options, therefore, no longer require "field" or "fields"
entries:
actuationDiskSource
buoyancyEnergy
buoyancyForce
meanVelocityForce
rotorDiskSource
volumeFractionSource
constantHeatTransfer
function2HeatTransfer
variableHeatTransfer
Non-standard field names can be overridden in the same way as in
boundary conditions; e.g., the velocity name can be overridden with a "U
<UName>;" entry if it does not have the default name, "U". The name of
the energy field is now always determined from the thermodynamics
model and should always be correct. Some options that can be applied to
an individual phase also support a "phase <phaseName>;" entry;
fvOptions field-name handling has been rewritten to increase its
flexibility and to improve warning messages. The flexibility now allows
for options that apply to all fields, or all fields of a given phase,
rather than being limited to a specific list of field names. Messages
warning about options that have not been applied now always print just
once per time-step.
This simplifies and standardises the handling of radiation in all solvers which
include an energy equation, all of which now support radiation via the
'radiation' fvOption which is selected in the constant/fvOption or
constant/<region>/fvOption file:
radiation
{
type radiation;
libs ("libradiationModels.so");
}
The radiation model, parameters, settings and sub-models are specified in the
'radiationProperties' file as before.
cpp is no longer used to pre-process Make/files files allowing standard make '#'
syntax for comments, 'ifdef', 'ifndef' conditionals etc. This is make possible
by automatically pre-pending SOURCE += to each of the source file names in
Make/files.
The list of source files compile can be specified either as a simple list of
files in Make/files e.g.
# Note: fileMonitor assumes inotify by default. Compile with -DFOAM_USE_STAT
# to use stat (=timestamps) instead of inotify
fileMonitor.C
ifdef SunOS64
dummyPrintStack.C
else
printStack.C
endif
LIB = $(FOAM_LIBBIN)/libOSspecific
or
or directly as the SOURCE entry which is used in the Makefile:
SOURCE = \
adjointOutletPressure/adjointOutletPressureFvPatchScalarField.C \
adjointOutletVelocity/adjointOutletVelocityFvPatchVectorField.C \
adjointShapeOptimizationFoam.C
EXE = $(FOAM_APPBIN)/adjointShapeOptimizationFoam
In either form make syntax for comments and conditionals is supported.
The interpolationLookUpTable is highly specialised for absorptionEmissionModels
which did not need to be templated and is now located in the appropriate
directory and namespace.
Solid thermo no longer requires a pressure field, so solid regions of
chtMultiRegionFoam cases no longer need a 0/<solidRegionName>/p file.
In order for solidThermo to continue to use heThermo and the low level
thermo classes, it now constructs a uniformGeometricScalarField for the
pressure with the value NaN. This is passed into the low-level thermo
models by heThermo. The enforces the requirement that low-level thermo
models used by solidThermo should have no pressure dependence. If an
instantiation is made with pressure dependence, the code will fail with
a floating point error.
Most fvOptions change the state of the fields and equations they are applied to
but do not change internal state so it makes more sense that the interface is
const, consistent with MeshObjects. For the few fvOptions which do maintain a
changing state the member data is now mutable.
All models that require templating on the thermodynamic model, including
the thermodynamic models themselves, are now instantiated using a
centralised set of variadic macros. Seven macros exist to instantiate
models for different classes of thermodynamics model. These are:
forGases: All model combinations valid for gases
forCommonGases: The most commonly used gas models
forAbsoluteGases: A limited selection of gas models with absolute
forms of energy, for use with Xi-combustion models
forLiquids: All model combinations valid for liquids
forCommonLiquids: The most commonly used liquid models
forPolynomials: Model combinations with properties fitted to
polynomials
forSolids: All model combinations valid for solids
All the *ThermoPhysics typedefs have been removed, as this system was
fundamentally not extensible. The enormous lists of thermodynamic
instantiations that existed for reaction thermos, chemistry models,
tabulation methods, etc..., were extremely difficult to read and reason
about what combinations are valid under what circumstances. This change
centralises those decisions, makes them concise and readable, and makes
them consistent across the entire codebase.
Soot model selection has now been brought up to date in line with
chemistry, combustion, and others. The angle-bracketed part of the name
is no longer necessary; this information is determined directly from the
existing thermo model. So, now to select a mixture-fraction soot model,
the entry is simply:
sootModel mixtureFraction;
Rather than:
sootModel mixtureFraction<rhoReactionThermo,gasHThermoPhysics>;
The only place in which *ThermoPhysics typedefs are still required in
the selection name is in the thermalBaffle1D boundary condition. Here
there is no thermo model from which to determine a name. This eventually
needs resolving either by adding a selection mechanism similar to that
of the thermo packages themselves, or by removing this boundary
condition in favour of the (non-1D) thermal baffle boundary condition
and region model.
providing the shear-stress term in the momentum equation for incompressible and
compressible Newtonian, non-Newtonian and visco-elastic laminar flow as well as
Reynolds averaged and large-eddy simulation of turbulent flow.
The general deviatoric shear-stress term provided by the MomentumTransportModels
library is named divDevTau for compressible flow and divDevSigma (sigma =
tau/rho) for incompressible flow, the spherical part of the shear-stress is
assumed to be either included in the pressure or handled separately. The
corresponding stress function sigma is also provided which in the case of
Reynolds stress closure returns the effective Reynolds stress (including the
laminar contribution) or for other Reynolds averaged or large-eddy turbulence
closures returns the modelled Reynolds stress or sub-grid stress respectively.
For visco-elastic flow the sigma function returns the effective total stress
including the visco-elastic and Newtonian contributions.
For thermal flow the heat-flux generated by thermal diffusion is now handled by
the separate ThermophysicalTransportModels library allowing independent run-time
selection of the heat-flux model.
During the development of the MomentumTransportModels library significant effort
has been put into rationalising the components and supporting libraries,
removing redundant code, updating names to provide a more logical, consistent
and extensible interface and aid further development and maintenance. All
solvers and tutorials have been updated correspondingly and backward
compatibility of the input dictionaries provided.
Henry G. Weller
CFD Direct Ltd.
derived from solidThermo. This allows the standard heat transfer boundary
conditions, for example externalWallHeatFluxTemperature, to be used with
solidDisplacementFoam and also significantly simplifies the code.
Additionally solidDisplacementFoam and solidEquilibriumDisplacementFoam have
been updated to handle spatially varying physical properties in a conservative
manner both for the stress and heat transfer. This means that the stress field
sigma is now dynamic rather than kinematic as it was previously. For uniform
property fields the behaviour of the solvers is the same as it was before this
update.
Function1 has been generalised in order to provide functionality
previously provided by some near-duplicate pieces of code.
The interpolationTable and tableReader classes have been removed and
their usage cases replaced by Function1. The interfaces to Function1,
Table and TableFile has been improved for the purpose of using it
internally; i.e., without user input.
Some boundary conditions, fvOptions and function objects which
previously used interpolationTable or other low-level interpolation
classes directly have been changed to use Function1 instead. These
changes may not be backwards compatible. See header documentation for
details.
In addition, the timeVaryingUniformFixedValue boundary condition has
been removed as its functionality is duplicated entirely by
uniformFixedValuePointPatchField.
This allows much greater flexibility in the instantiation of reaction system
which may in general depend on fields other than the thermodynamic state. This
also simplifies mixture thermodynamics removing the need for the reactingMixture
and the instantiation of all the thermodynamic package combinations depending on
it.
Currently these deleted function declarations are still in the private section
of the class declarations but will be moved by hand to the public section over
time as this is too complex to automate reliably.
Replaced all uses of complex Xfer class with C++11 "move" constructors and
assignment operators. Removed the now redundant Xfer class.
This substantial changes improves consistency between OpenFOAM and the C++11 STL
containers and algorithms, reduces memory allocation and copy overhead when
returning containers from functions and simplifies maintenance of the core
libraries significantly.
The writeEntry form is now defined and used consistently throughout OpenFOAM
making it easier to use and extend, particularly to support binary IO of complex
dictionary entries.
The radiation modelling library has been moved out of
thermophysicalProperties into the top-level source directory. Radiation
is a process, not a property, and belongs alongside turbulence,
combustion, etc...
The namespaces used within the radiation library have been made
consistent with the rest of the code. Selectable sub-models are in
namespaces named after their base classes. Some models have been
renamed remove the base type from the suffix, as this is unnecessary.
These renames are:
Old name: New name:
binaryAbsorptionEmission binary
cloudAbsorptionEmission cloud
constantAbsorptionEmission constant
greyMeanAbsorptionEmission greyMean/greyMeanCombustion
greyMeanSolidAbsorptionEmission greyMeanSolid
wideBandAbsorptionEmission wideBand/wideBandCombustion
cloudScatter cloud
constantScatter constant
mixtureFractionSoot mixtureFraction
Some absorption-emission models have been split into versions which do
and don't use the heat release rate. The version that does has been
given the post-fix "Combustion" and has been moved into the
combustionModels library. This removes the dependence on a registered
Qdot field, and makes the models compatible with the recent removal of
that field from the combustion solvers.