Commit Graph

773 Commits

Author SHA1 Message Date
87b606c45e foamDictionary.C: fixed typo 2023-03-14 11:33:17 +00:00
c5107bc42f surfaceCheck: make the -verbose option do something 2023-03-10 23:05:50 +00:00
67e692b5a8 foamRun, foamMultiRun: Pre-load the solver libraries before the mesh/meshes are constructed
to ensure that any solver-specific patch types are available before mesh construction.
2023-03-07 13:18:33 +00:00
25dd524c84 generic.*Patch: Moved to new genericPatches library
genericPatches is linked into mesh generation and manipulation utilities but not
solvers so that the solvers now check for the availability of the specified
patch types.  Bugs in the tutorials exposed by this check have been corrected.
2023-03-03 09:03:47 +00:00
390c588cd4 mappedExtrudedPatchBase: New base class for extruded patches
mappedExtrudedPolyPatch and mappedExtrudedWallPolyPatch are now derived from mappedExtrudedPatchBase
2023-03-02 20:25:22 +00:00
c7c8c0fa46 extrudeToRegionMesh: Added options to set the name and type of the generated patches
e.g. in extrudeToRegionMeshDict:

// Generate the region named film
region          film;

// from the patch extrudeWall
patches         (extrudeWall);

// generating mapped patches for the extruded region
adaptMesh       yes;

// New options:

// Set the type of the mapped patch on the existing mesh to mappedWall ...
patchTypes      (mappedWall);

// ... and name to wall
patchNames      (wall);

// Set the type of the mapped patch on the region mesh to mappedFilmWall ...
regionPatchTypes   (mappedFilmWall);

// ... and name to wall
regionPatchNames   (wall);

// Set the type of the opposite patch on the region mesh to empty ...
regionOppositePatchTypes    (empty);

// ... and name to empty
regionOppositePatchNames    (empty);

All the above entries are optional and if not present the previous behaviour is
reproduced.
2023-02-28 15:43:37 +00:00
cd5acd5ed2 foamToVtk: Changed -poly option to -polyhedra
The new option takes a value indicating which cell types should be
written out as polyhedra. The values are as follows:

      none: No polyhedral cells are written. Cells which match specific
            shapes (hex, pyramid, prism, ...) are written as their
            corresponding VTK cell types. Arbitrary polyhedral cells
            that do not match a specific shape are decomposed into
            tetrahedra.

 polyhedra: Only arbitrary polyhedral cells are written as a VTK
            polyhedron. Cells that match specific shapes are written as
            their corresponding VTK cell types.

       all: All cells are written as a VTK polyhedron.

The default is 'none', which retains the previous default behaviour.
2023-02-17 15:11:20 +00:00
f95eb5fd11 meshToMesh, mapFieldsPar: Rationalisation
Cell-to-cell interpolation has been moved to a hierarchy separate from
meshToMesh, called cellsToCells. The meshToMesh class is now a
combination of a cellsToCells object and multiple patchToPatch objects.
This means that when only cell-to-cell interpolation is needed a basic
cellsToCells object can be selected.

Cell-to-cell and vol-field-to-vol-field interpolation now has two well
defined sets of functions, with a clear distinction in how weights that
do not sum to unity are handled. Non-unity weights are either
normalised, or a left-over field is provided with which to complete the
weighted sum.

The left-over approach is now consistently applied in mapFieldsPar,
across both the internal and patch fields, if mapping onto an existing
field in the target case. Warning are now generated for invalid
combinations of settings, such as mapping between inconsistent meshes
without a pre-existing target field.

All mapping functions now take fields as const references and return tmp
fields. This avoids the pattern in which non-const fields are provided
which relate to the source, and at some point in the function transfer
to the target. This pattern is difficult to reason about and does not
provide any actual computational advantage, as the fields invariably get
re-allocated as part of the process anyway.

MeshToMesh no longer stores the cutting patches. The set of cutting
patches is not needed anywhere except at the point of mapping a field,
so it is now supplied to the mapping functions as an argument.

The meshToMesh topology changer no longer supports cutting patch
information. This did not previously work. Cutting patches either get
generated as calculated, or they require a pre-existing field to specify
their boundary condition. Neither of these options is suitable for a
run-time mesh change.

More code has been shared with patchToPatch, reducing duplication.
2023-02-16 11:12:36 +00:00
bffbfeb8ec decomposePar: Corrected indexing bug 2023-02-09 16:24:26 +00:00
d4980f71d6 decomposePar: Removed left over -dict option 2023-02-07 16:14:30 +00:00
38e8e7916a fvPatchField, fvsPatchField, pointPatchField: Generalised in-place mapping
The patch field 'autoMap' and 'rmap' functions have been replaced with a
single 'map' function that can used to do any form of in-place
patch-to-patch mapping. The exact form of mapping is now controlled
entirely by the mapper object.

An example 'map' function is shown below:

    void nutkRoughWallFunctionFvPatchScalarField::map
    (
        const fvPatchScalarField& ptf,
        const fvPatchFieldMapper& mapper
    )
    {
        nutkWallFunctionFvPatchScalarField::map(ptf, mapper);

        const nutkRoughWallFunctionFvPatchScalarField& nrwfpsf =
            refCast<const nutkRoughWallFunctionFvPatchScalarField>(ptf);

        mapper(Ks_, nrwfpsf.Ks_);
        mapper(Cs_, nrwfpsf.Cs_);
    }

This single function replaces these two previous functions:

    void nutkRoughWallFunctionFvPatchScalarField::autoMap
    (
        const fvPatchFieldMapper& m
    )
    {
        nutkWallFunctionFvPatchScalarField::autoMap(m);
        m(Ks_, Ks_);
        m(Cs_, Cs_);
    }

    void nutkRoughWallFunctionFvPatchScalarField::rmap
    (
        const fvPatchScalarField& ptf,
        const labelList& addr
    )
    {
        nutkWallFunctionFvPatchScalarField::rmap(ptf, addr);

        const nutkRoughWallFunctionFvPatchScalarField& nrwfpsf =
            refCast<const nutkRoughWallFunctionFvPatchScalarField>(ptf);

        Ks_.rmap(nrwfpsf.Ks_, addr);
        Cs_.rmap(nrwfpsf.Cs_, addr);
    }

Calls to 'autoMap' should be replaced with calls to 'map' with the same
mapper object and the patch field itself provided as the source. Calls
to 'rmap' should be replaced with calls to 'map' by wrapping the
addressing in a 'reverseFvPatchFieldMapper' (or
'reversePointPatchFieldMapper') object.

This change simplifies the creation of new patch fields and hence
improves extensibility. It also provides more options regarding general
mapping strategies between patches. Previously, general abstracted
mapping was only possible in 'autoMap'; i.e., from a patch to itself.
Now, general mapping is possible between different patches.
2023-02-07 14:11:27 +00:00
4dbc23c141 ListOps::identity -> identityMap
to avoid confusion with the tensor identity.
2023-02-03 17:12:31 +00:00
0e22a7a807 applications/utilities/mesh/generation/Allwmake: Removed, no longer required 2023-02-01 16:43:08 +00:00
099505df9c zeroDimensionalFvMesh: New utility to create zero dimensional mesh
This utility can be run with no arguments or configuration, and will
create a unit cube mesh with empty patches on all sides.
2023-01-31 15:09:18 +00:00
3a269eb3d7 #includeModel, #includeConstraint: New dictionary directives
#includeModel includes an fvModel configuration file into the fvModels file
 #includeConstraint includes an fvModel configuration file into the fvConstraints file

These operate in the same manner as #includeFunc does for functionObjects and
search the etc/caseDicts/fvModels and etc/caseDicts/fvConstraints directories
for configuration files and apply optional argument substitution.

Class
    Foam::functionEntries::includeFvModelEntry

Description
    Specify a fvModel dictionary file to include, expects the
    fvModel name to follow with option arguments (without quotes).

    Searches for fvModel dictionary file in user/group/shipped
    directories allowing for version-specific and version-independent files
    using the following hierarchy:
    - \b user settings:
      - ~/.OpenFOAM/\<VERSION\>/caseDicts/fvModels
      - ~/.OpenFOAM/caseDicts/fvModels
    - \b group (site) settings (when $WM_PROJECT_SITE is set):
      - $WM_PROJECT_SITE/\<VERSION\>/etc/caseDicts/fvModels
      - $WM_PROJECT_SITE/etc/caseDicts/fvModels
    - \b group (site) settings (when $WM_PROJECT_SITE is not set):
      - $WM_PROJECT_INST_DIR/site/\<VERSION\>/etc/caseDicts/fvModels
      - $WM_PROJECT_INST_DIR/site/etc/caseDicts/fvModels
    - \b other (shipped) settings:
      - $WM_PROJECT_DIR/etc/caseDicts/fvModels

    The optional field arguments included in the name are inserted in 'field' or
    'fields' entries in the fvModel dictionary and included in the name
    of the fvModel entry to avoid conflict.

    Examples:
    \verbatim
        #includeModel clouds
        #includeModel surfaceFilms
    \endverbatim

    Other dictionary entries may also be specified using named arguments.

See also
    Foam::includeFvConstraintEntry
    Foam::includeFuncEntry

Class
    Foam::functionEntries::includeFvConstraintEntry

Description
    Specify a fvConstraint dictionary file to include, expects the
    fvConstraint name to follow with option arguments (without quotes).

    Searches for fvConstraint dictionary file in user/group/shipped
    directories allowing for version-specific and version-independent files
    using the following hierarchy:
    - \b user settings:
      - ~/.OpenFOAM/\<VERSION\>/caseDicts/fvConstraints
      - ~/.OpenFOAM/caseDicts/fvConstraints
    - \b group (site) settings (when $WM_PROJECT_SITE is set):
      - $WM_PROJECT_SITE/\<VERSION\>/etc/caseDicts/fvConstraints
      - $WM_PROJECT_SITE/etc/caseDicts/fvConstraints
    - \b group (site) settings (when $WM_PROJECT_SITE is not set):
      - $WM_PROJECT_INST_DIR/site/\<VERSION\>/etc/caseDicts/fvConstraints
      - $WM_PROJECT_INST_DIR/site/etc/caseDicts/fvConstraints
    - \b other (shipped) settings:
      - $WM_PROJECT_DIR/etc/caseDicts/fvConstraints

    The optional field arguments included in the name are inserted in 'field' or
    'fields' entries in the fvConstraint dictionary and included in the name
    of the fvConstraint entry to avoid conflict.

    Examples:
    \verbatim
        #includeConstraint limitPressure(minFactor=0.1, maxFactor=2)
        #includeConstraint limitTemperature(min=101, max=1000)
    \endverbatim
    or for a multiphase case:
    \verbatim
        #includeConstraint limitLowPressure(min=1e4)
        #includeConstraint limitTemperature(phase=steam, min=270, max=2000)
        #includeConstraint limitTemperature(phase=water, min=270, max=2000)
    \endverbatim

    Other dictionary entries may also be specified using named arguments.

See also
    Foam::includeFvModelEntry
    Foam::includeFuncEntry
2023-01-30 18:59:07 +00:00
260a8502f0 solvers::movingMesh: New solver module to move the mesh
Executes the mover, topoChanger and distributor specified in the
dynamicMeshDict.

Replaces the moveMesh and earlier moveDynamicMesh utilities.
2023-01-27 14:27:52 +00:00
104be8eae9 Corrected typos 2023-01-24 22:01:34 +00:00
00ca8905a0 Minor typo corrections
Patch contributed by Timo Niemi, VTT.
2023-01-24 18:27:37 +00:00
9e51bb48ce foamyHexMesh, foamyQuadMesh: Removed pending funding for further development and maintenance 2023-01-06 22:23:59 +00:00
20c7c7c21a Resolve warning messages generated by Clang-15 2023-01-03 11:26:15 +00:00
a3681c3428 DemandDrivenMeshObject: Templated abstract base-class for demand-driven mesh objects
Replaces MeshObject, providing a formalised method for creating demand-driven
mesh objects, optionally supporting update functions called by the mesh
following mesh changes.

Class
    Foam::DemandDrivenMeshObject

Description
    Templated abstract base-class for demand-driven mesh objects used to
    automate their allocation to the mesh database and the mesh-modifier
    event-loop.

    DemandDrivenMeshObject is templated on the type of mesh it is allocated
    to, the type of the mesh object (TopologicalMeshObject, GeometricMeshObject,
    MoveableMeshObject, DistributeableMeshObject, UpdateableMeshObject) and the
    type of the actual object it is created for example:

    \verbatim
    class leastSquaresVectors
    :
        public DemandDrivenMeshObject
        <
            fvMesh,
            MoveableMeshObject,
            leastSquaresVectors
        >
    {
    .
    .
    .
        //- Delete the least square vectors when the mesh moves
        virtual bool movePoints();
    };
    \endverbatim

    MeshObject types:

    - TopologicalMeshObject: mesh object to be deleted on topology change
    - GeometricMeshObject: mesh object to be deleted on geometry change
    - MoveableMeshObject: mesh object to be updated in movePoints
    - UpdateableMeshObject: mesh object to be updated in topoChange or
        movePoints
    - PatchMeshObject: mesh object to be additionally updated patch changes

    DemandDrivenMeshObject should always be constructed and accessed via the New
    methods provided so that they are held and maintained by the objectRegistry.
    To ensure this use constructors of the concrete derived types should be
    private or protected and friendship with the DemandDrivenMeshObject
    base-class declared so that the New functions can call the the constructors.

Additionally the mesh-object types (TopologicalMeshObject, GeometricMeshObject,
MoveableMeshObject, DistributeableMeshObject, UpdateableMeshObject) can now be
used as mix-in types for normally allocated objects providing the same interface
to mesh-change update functions, see the Fickian fluid
thermophysicalTransportModel or anisotropic solid thermophysicalTransportModel.
This new approach to adding mesh-update functions to classes will be applied to
other existing classes and future developments to simplify the support and
maintenance of run-time mesh changes, in particular mesh refinement/unrefinement
and mesh-to-mesh mapping.
2022-12-13 18:29:20 +00:00
d122c32cd8 foamyHexMesh: Compile against CGAL-5.5 2022-12-13 15:04:16 +00:00
d020df456c engineCompRatio: Corrected typo
Resolves bug-report https://bugs.openfoam.org/view.php?id=3942
2022-12-12 18:52:05 +00:00
7efb6cc849 Removed deprecated calls to std::random_shuffle 2022-12-08 10:32:03 +00:00
364e402b5b Resolve warning messages generated by Clang-14 2022-12-08 08:35:47 +00:00
456b7e31ee vtkPVFoamVolFields, semiImplicitSource: Use VolInternalField<Type> to simplify code 2022-12-07 11:55:53 +00:00
966f015082 Further code simplification: Foam::GeometricField<Type, Foam::fvPatchField, Foam::volMesh> -> VolField<Type> 2022-12-02 22:31:21 +00:00
2f4dd4fe27 Code simplification: GeometricField<Type, fvPatchField, volMesh> -> VolField<Type>
Using the VolField<Type> partial specialisation of
GeometricField<Type, fvPatchField, volMesh>
simplifies the code and improves readability.
2022-12-02 22:04:45 +00:00
fe368d5332 Code simplification: GeometricField<Type, fvsPatchField, surfaceMesh> -> SurfaceField<Type>
Using the SurfaceField<Type> partial specialisation of
GeometricField<Type, fvsPatchField, surfaceMesh>
simplifies the code and improves readability.
2022-12-02 19:02:15 +00:00
e84300d124 Code simplification: GeometricField<Type, pointPatchField, pointMesh> -> PointField<Type>
Using the PointField<Type> partial specialisation of GeometricField<Type,
pointPatchField, pointMesh> simplified the code and improves readability.
2022-12-02 15:24:50 +00:00
5f7993dab4 Replaced inconsistently named local typedefs with VolField, SurfaceField and PointField
making the code more consistent and readable.
2022-12-02 10:54:21 +00:00
ed7e703040 Time::timeName(): no longer needed, calls replaced by name()
The timeName() function simply returns the dimensionedScalar::name() which holds
the user-time name of the current time and now that timeName() is no longer
virtual the dimensionedScalar::name() can be called directly.  The timeName()
function implementation is maintained for backward-compatibility.
2022-11-30 15:53:51 +00:00
723f522c51 cutPoly: New polyhedral cutting routines and isoSurface algorithm
A set of routines for cutting polyhedra have been added. These can cut
polyhedral cells based on the adjacent point values and an iso-value
which defines the surface. The method operates directly on the
polyhedral cells; it does not decompose them into tetrahedra at any
point. The routines can compute the cut topology as well as integrals of
properties above and below the cut surface.

An iso-surface algorithm has been added based on these polyhedral
cutting routines. It is significantly more robust than the previous
algorithm, and produces compact surfaces equivalent to the previous
algorithm's maximum filtering level. It is also approximately 3 times
faster than the previous algorithm, and 10 times faster when run
repeatedly on the same set of cells (this is because some addressing is
cached and reused).

This algorithm is used by the 'isoSurface', 'distanceSurface' and
'cutPlane' sampled surfaces.

The 'cutPlane' sampled surface is a renaming of 'cuttingPlane' to make
it consistent with the corresponding packaged function. The name
'cuttingPlane' has been retained for backwards compatibility and can
still be used to select a 'cutPlane' surface. The legacy 'plane' surface
has been removed.

The 'average' keyword has been removed from specification of these
sampled surfaces as cell-centred values are no longer used in the
generation of or interpolation to an iso-surface. The 'filtering'
keyword has also been removed as it relates to options within the
previous algorithm. Zone support has been reinstated into the
'isoSurface' sampled surface. Interpolation to all these sampled
surfaces has been corrected to exactly match the user-selected
interpolation scheme, and the interpolation procedure no longer
unnecessarily re-generates data that is already available.
2022-11-23 16:56:23 +00:00
052a4803f0 regionModels: Refactored to remove the now redundant regionModel base class 2022-11-23 14:23:12 +00:00
4cc5f8e964 decomposePar: Fix distribution of uniform data in collated cases 2022-11-11 11:10:46 +00:00
095f4b03f1 checkMesh: Added writing of NCC coverage
If checkMesh is executed with the -allGeometry option, then surface
files containing the NCC coverage will now be written out. Coverage is
the ratio between coupled area magnitude and total area magnitude. This
is useful for locating parts of the boundary mesh that are in error.
Errors (such as folds and pinches) typically manifest as a coverage
value that deviates significantly from a value of one.

This is comparable to the writing of AMI patches's weight sums, which
also used to occur when the -allGeometry option was selected.
2022-11-01 10:42:13 +00:00
6b2748887a Merge branch 'master' of github.com-OpenFOAM:OpenFOAM/OpenFOAM-dev 2022-10-27 11:59:39 +01:00
5fd17d3292 setFields: Added time options -constant, -latestTime, -noZero, -time
in particular to support setting constant property fields in the constant
directory.

Usage: setFields [OPTIONS]
options:
  -case <dir>       specify alternate case directory, default is the cwd
  -constant         include the 'constant/' dir in the times list
  -dict <file>      read control dictionary from specified location
  -fileHandler <handler>
                    override the fileHandler
  -hostRoots <((host1 dir1) .. (hostN dirN))>
                    slave root directories (per host) for distributed running
  -latestTime       select the latest time
  -libs '("lib1.so" ... "libN.so")'
                    pre-load libraries
  -noFunctionObjects
                    do not execute functionObjects
  -noZero           exclude the '0/' dir from the times list
  -parallel         run in parallel
  -region <name>    specify alternative mesh region
  -roots <(dir1 .. dirN)>
                    slave root directories for distributed running
  -time <time>      specify a single time value to select
  -srcDoc           display source code in browser
  -doc              display application documentation in browser
  -help             print the usage
2022-10-27 11:57:41 +01:00
704b65f8de triangle, tetrahedron: Consolidate circumCircle/Sphere functions 2022-10-27 08:52:14 +01:00
a7155a7e0a decomposePar, reconstructPar: Catch decomposition of overridden cyclics
Patch fields on cyclic patches which have overridden the cyclic
constraint using a "patchType cyclic;" setting cannot be decomposed.
OpenFOAM does not have processor variants of jumpCyclic,
porousBafflePressure, etc... Using these conditions in a decomposed case
requires the cyclic to be constrained to a single processor.

This change catches this problem in decomposePar and reconstructPar and
raises a fatal error, rather than continuing and silently converting
these overridden boundary conditions to a standard processorCyclic patch
field.

Resolves bug report https://bugs.openfoam.org/view.php?id=3916
2022-10-21 09:17:14 +01:00
cd7405e30a extrudeToRegionMesh: Fixed issues associated with extruding from baffles 2022-10-18 16:13:35 +01:00
03b0619ee1 lagrangian: Support meshToMesh mapping
Lagrangian is now compatible with the meshToMesh topology changer. If a
cloud is being simulated and this topology changer is active, then the
cloud data will be automatically mapped between the specified sequence
of meshes in the same way as the finite volume data. This works both for
serial and parallel simulations.

In addition, mapFieldsPar now also supports mapping of Lagrangian data
when run in parallel.
2022-10-18 12:06:54 +01:00
5b11f5a833 functionObjects: Standardised file paths for functions applied to regions
Function objects now write to the following path when applied to a
non-default region of a multi-region case:

    postProcessing/<regionName>/<functionName>/<time>/

Previously the order of <regionName> and <functionName> was not
consistent between the various function objects.

Resolves bug report https://bugs.openfoam.org/view.php?id=3907
2022-10-13 11:28:26 +01:00
475e7494be chemkinToFoam: Added -precision option
to allow the write precision to be increased if necessary, the default is 10.
2022-10-08 20:20:33 +01:00
f4ac5f8748 AMIInterpolation, cyclicAMI: Removed
AMIInterpolation and cyclicAMI have been superseded by patchToPatch and
nonConformalCoupled, respectively.

The motivation behind this change is explained in the following article:

    https://cfd.direct/openfoam/free-software/non-conformal-coupling/

Information about how to convert a case which uses cyclicAMI to
nonConformalCoupled can be found here:

    https://cfd.direct/openfoam/free-software/using-non-conformal-coupling/
2022-09-22 10:05:41 +01:00
4c223b8aee particle: Removed polyMesh reference
This reference represents unnecessary storage. The mesh can be obtained
from tracking data or passed to the particle evolution functions by
argument.

In addition, removing the mesh reference makes it possible to construct
as particle from an Istream without the need for an iNew class. This
simplifies stream-based transfer, and makes it possible for particles to
be communicated by a polyDistributionMap.
2022-09-21 16:31:40 +01:00
50aac13df5 typeGlobal, typeGlobalFile: Changed to trait structure
This allows for partial specialisation, so the different variants of the
global IO containers do not need the function to be overloaded for each
contained type. This also fixes an ommission in providing overloads of
these functions for some of the global IO containers.

Resolves bug report https://bugs.openfoam.org/view.php?id=3890
2022-09-20 16:39:05 +01:00
fef0206bdb IOList, GlobalIOList, CompactIOList: Templated on container type
This reduces duplication and inconsistency between the List, Field, Map,
and PtrList variants. It also allows for future extension to other
container types such as DynamicList.
2022-09-16 09:16:58 +01:00
70ae051511 surfaceMeshConvertTesting: Removed
This is a leftover piece of unnecessary test code. Use surfaceConvert
for triangulated surfaces or surfaceMeshConvert for polygonal surfaces.
2022-09-16 08:24:04 +01:00
f5cf1d8020 foamDictionary: Added -case option to investigate usefulness and if there are problems 2022-09-15 19:21:08 +01:00