The fact that these names create sources in their associated transport
equations is clear in context, so the name does not need to contain
'Source'.
Having 'Source' in the name is a historic convention that dates back to
when fvModels and fvConstraints were combined in a single fvOptions
interface. In this interface, disambiguation between sources and
constraints was necessary.
The full set of name changes is as follows:
accelerationSource -> acceleration
actuationDiskSource -> actuationDisk
effectivenessHeatExchangerSource -> effectivenessHeatExchanger
explicitPorositySource -> porosityForce
radialActuationDiskSource -> radialActuationDisk
rotorDiskSource -> rotorDisk
sixDoFAccelerationSource -> sixDoFAcceleration
solidEquilibriumEnergySource -> solidThermalEquilibrium
solidificationMeltingSource -> solidificationMelting
volumeFractionSource -> volumeBlockage
interRegionExplicitPorositySource -> interRegionPorosityForce
VoFSolidificationMeltingSource -> VoFSolidificationMelting
The old names are still available for backwards compatibility.
The fact that these names refer to constraints is clear in context, so
the name does not need to contain 'Constraint'.
Having 'Constraint' in the name is a historic convention that dates back
to when fvConstraints and fvModels were combined in a single fvOptions
interface. In this interface, disambiguation between sources and
constraints was necessary.
This change has been applied to the 'fixedValue' and 'fixedTemperature'
constraints, which were formerly named 'fixedValueConstraint' and
'fixedTemperatureConstraint', respectively.
The old names are still available for backwards compatibility.
When an fvModel source introduces fluid into a simulation it should also
create a corresponding source term for all properties transported into
the domain by that injection. The source is, effectively, an alternative
form of inlet boundary, on which all transported properties need an
inlet value specified.
These values are now specified in the property field files. The
following is an example of a 0/U file in which the velocity of fluid
introduced by a fvModel source called "injection1" is set to a fixed
value of (-1 0 0):
dimensions [0 1 -1 0 0 0 0];
internalField uniform (0 0 0);
boundaryField
{
#includeEtc "caseDicts/setConstraintTypes"
wall
{
type noSlip;
}
atmosphere
{
type pressureInletOutletVelocity;
value $internalField;
}
}
// *** NEW ***
sources
{
injection1
{
type uniformFixedValue;
uniformValue (-1 0 0);
}
}
And the following entry in the 0/k file specifies the turbulent kinetic
energy introduced as a fraction of the mean flow kinetic energy:
sources
{
injection1
{
type turbulentIntensityKineticEnergy;
intensity 0.05;
}
}
The specification is directly analogous to boundary conditions. The
conditions are run-time selectable and can be concisely implemented.
They can access each other and be inter-dependent (e.g., the above,
where turbulent kinetic energy depends on velocity). The syntax keeps
field data localised and makes the source model (e.g., massSource,
volumeSource, ...) specification independent from what other models and
fields are present in the simulation. The 'fieldValues' entry previously
required by source models is now no longer required.
If source values need specifying and no source condition has been
supplied in the relevant field file then an error will be generated.
This error is similar to that generated for missing boundary conditions.
This replaces the behaviour where sources such as these would introduce
a value of zero, either silently or with a warning. This is now
considered unacceptable. Zero might be a tolerable default for certain
fields (U, k), but is wholly inappropriate for others (T, epsilon, rho).
This change additionally makes it possible to inject fluid into a
multicomponent solver with a specified temperature. Previously, it was
not possible to do this as there was no means of evaluating the energy
of fluid with the injected composition.
Lagrangian's dependency set is simpler than it used to be. There is no
longer a need to maintain a separate library for models that depend on
the momentum transport modelling.
setFormat no longer defaults to the value of graphFormat optionally set in
controlDict and must be set in the functionObject dictionary.
boundaryFoam, financialFoam and pdfPlot still require a graphFormat entry in
controlDict but this is now read directly rather than by Time.
The parcelsPerSecond control can now be specified as a time-varying
function. This provides additional control over the temporal
distribution of injected parcels, which may be advantageous if, for
example, the mass flow rate varies significantly. It also enables
variable flow rates of particulates in cases which have a fixed number
of particles per parcel.