Commit Graph

835 Commits

Author SHA1 Message Date
37e2922cd5 Merge branch 'master' of github.com-OpenFOAM:OpenFOAM/OpenFOAM-dev 2020-09-03 10:30:49 +01:00
3831bc05a7 tutorials: Updated the object name turbulenceProperties -> momentumTransport 2020-09-03 10:29:48 +01:00
f94884c87a multiphaseEulerFoam/.../populationBalance: Changed sizeGroup equations to volumetric form
Patch contributed by Institute of Fluid Dynamics,
Helmholtz-Zentrum Dresden - Rossendorf (HZDR)
2020-09-02 20:31:03 +01:00
281f8ba40c multiphaseEulerFoam/.../BrownianCollisions: Added slip correction
Patch contributed by Institute of Fluid Dynamics,
Helmholtz-Zentrum Dresden - Rossendorf (HZDR)
2020-08-26 14:22:01 +01:00
36ce8b31ae multiphaseEulerFoam/.../aerosolDrag: Improvements
Expanded the documentation and updated the mean free path calculation

Patch contributed by Institute of Fluid Dynamics,
Helmholtz-Zentrum Dresden - Rossendorf (HZDR)
2020-08-26 14:19:51 +01:00
80662fe1e3 tutorials::fluidisedBed: Removed the extremaCoeff
With the new formulation of multiphase limiters the extremaCoeff is no longer
needed for fluidised bed simulations.
2020-08-26 11:42:47 +01:00
e339ec34ee tutorials/multiphase/multiphaseEulerFoam/laminar/injection: Changed to adjustTimeStep 2020-08-18 12:33:24 +01:00
d926651d63 multiphaseEulerFoam: Added switches to revert to the previous phase limiters for testing
Optional switches "splitPhaseFlux" and "meanFluxReference" are now provided and
can be set true in fvSolution e.g.

solvers
{
    "alpha.*"
    {
        nAlphaCorr      1;
        nAlphaSubCycles 2;

        splitPhaseFlux  true;
        meanFluxReference true;
    }
.
.
.

to reinstate the previous form of phase flux limiters in which the mean and
phase flux differences are interpolated separately and the limited correction
referenced to the mean rather than phase flux.  This form of discretisation and
limiting is more aggressive than the latest version and hence less accurate but
it is hoped that the latest form of limitSum will handle the boundedness at the
upper limit reliably allowing the new more accurate limiters to be used for most
if not all multiphase simulations.
2020-08-15 11:23:41 +01:00
d65b3ef761 Updated calls to foamDictionary in the tutorials to use the 'slash' entry scope syntax 2020-08-15 00:16:16 +01:00
51d763685e thermophysicalModels: Removed pressure field from solid thermos
Solid thermo no longer requires a pressure field, so solid regions of
chtMultiRegionFoam cases no longer need a 0/<solidRegionName>/p file.

In order for solidThermo to continue to use heThermo and the low level
thermo classes, it now constructs a uniformGeometricScalarField for the
pressure with the value NaN. This is passed into the low-level thermo
models by heThermo. The enforces the requirement that low-level thermo
models used by solidThermo should have no pressure dependence. If an
instantiation is made with pressure dependence, the code will fail with
a floating point error.
2020-08-07 12:32:20 +01:00
1eab1b7ffe tutorials/lagrangian/.../verticalChannel*: Updated particle tracks configuration
Resolves bug report https://bugs.openfoam.org/view.php?id=3528
2020-08-06 14:32:58 +01:00
ff20398245 fvOptions: Changed the source, constraint and correct functions to const
Most fvOptions change the state of the fields and equations they are applied to
but do not change internal state so it makes more sense that the interface is
const, consistent with MeshObjects.  For the few fvOptions which do maintain a
changing state the member data is now mutable.
2020-08-04 15:40:40 +01:00
87f17b66bb tutorials/Alltest: Removed no longer functional code 2020-08-04 11:27:16 +01:00
5f3c604d05 reactingParticleFoam: Support singleComponentMixtures
This is useful for testing purposes in comparison with rhoPimpleFoam.

Also made a fix to the handling of multivariate convection schemes in
chtMultiRegionFoam.
2020-07-31 11:38:59 +01:00
43d66b5e7c lagrangian: Run-time selectable clouds
The standard set of Lagrangian clouds are now selectable at run-time.
This means that a solver that supports Lagrangian modelling can now use
any type of cloud (with some restrictions). Previously, solvers were
hard-coded to use specific cloud modelling. In addition, a cloud-list
structure has been added so that solvers may select multiple clouds,
rather than just one.

The new system is controlled as follows:

- If only a single cloud is required, then the settings for the
  Lagrangian modelling should be placed in a constant/cloudProperties
  file.

- If multiple clouds are required, then a constant/clouds file should be
  created containing a list of cloud names defined by the user. Each
  named cloud then reads settings from a corresponding
  constant/<cloudName>Properties file. Clouds are evolved sequentially
  in the order in which they are listed in the constant/clouds file.

- If no clouds are required, then the constant/cloudProperties file and
  constant/clouds file should be omitted.

The constant/cloudProperties or constant/<cloudName>Properties files are
the same as previous cloud properties files; e.g.,
constant/kinematicCloudProperties or constant/reactingCloud1Properties,
except that they now also require an additional top-level "type" entry
to select which type of cloud is to be used. The available options for
this entry are:

    type    cloud;                   // A basic cloud of solid
                                     // particles. Includes forces,
                                     // patch interaction, injection,
                                     // dispersion and stochastic
                                     // collisions. Same as the cloud
                                     // previously used by
                                     // rhoParticleFoam
                                     // (uncoupledKinematicParticleFoam)

    type    collidingCloud;          // As "cloud" but with resolved
                                     // collision modelling. Same as the
                                     // cloud previously used by DPMFoam
                                     // and particleFoam
                                     // (icoUncoupledKinematicParticleFoam)

    type    MPPICCloud;              // As "cloud" but with MPPIC
                                     // collision modelling. Same as the
                                     // cloud previously used by
                                     // MPPICFoam.

    type    thermoCloud;             // As "cloud" but with
                                     // thermodynamic modelling and heat
                                     // transfer with the carrier phase.
                                     // Same as the limestone cloud
                                     // previously used by
                                     // coalChemistryFoam.

    type    reactingCloud;           // As "thermoCloud" but with phase
                                     // change and mass transfer
                                     // coupling with the carrier
                                     // phase. Same as the cloud
                                     // previously used in fireFoam.

    type    reactingMultiphaseCloud; // As "reactingCloud" but with
                                     // particles that contain multiple
                                     // phases. Same as the clouds
                                     // previously used in
                                     // reactingParcelFoam and
                                     // simpleReactingParcelFoam and the
                                     // coal cloud used in
                                     // coalChemistryFoam.

    type    sprayCloud;              // As "reactingCloud" but with
                                     // additional spray-specific
                                     // collision and breakup modelling.
                                     // Same as the cloud previously
                                     // used in sprayFoam and
                                     // engineFoam.

The first three clouds are not thermally coupled, so are available in
all Lagrangian solvers. The last four are thermally coupled and require
access to the carrier thermodynamic model, so are only available in
compressible Lagrangian solvers.

This change has reduced the number of solvers necessary to provide the
same functionality; solvers that previously differed only in their
Lagrangian modelling can now be combined. The Lagrangian solvers have
therefore been consolidated with consistent naming as follows.

    denseParticleFoam: Replaces DPMFoam and MPPICFoam

    reactingParticleFoam: Replaces sprayFoam and coalChemistryFoam

    simpleReactingParticleFoam: Replaces simpleReactingParcelFoam

    buoyantReactingParticleFoam: Replaces reactingParcelFoam

fireFoam and engineFoam remain, although fireFoam is likely to be merged
into buoyantReactingParticleFoam in the future once the additional
functionality it provides is generalised.

Some additional minor functionality has also been added to certain
solvers:

- denseParticleFoam has a "cloudForceSplit" control which can be set in
  system/fvOptions.PIMPLE. This provides three methods for handling the
  cloud momentum coupling, each of which have different trade-off-s
  regarding numerical artefacts in the velocity field. See
  denseParticleFoam.C for more information, and also bug report #3385.

- reactingParticleFoam and buoyantReactingParticleFoam now support
  moving mesh in order to permit sharing parts of their implementation
  with engineFoam.
2020-07-31 09:35:12 +01:00
bddd829fc2 chemistrySolver::EulerImplicit: Updated to use the StandardChemistryModel reaction Jacobian 2020-07-29 19:09:40 +01:00
dee1e4f4c2 plane: Removed unnecessary sub-dictionaries from caseDicts and tutorials 2020-07-24 14:11:36 +01:00
36731b2fe9 tutorials: Prevent foamDictionary output from printing during test loop
foamDictionary executions are now wrapped by runApplication like any
other execution so that they do not print during a test loop.
foamDictionary does not produce a conforming log, however, so
log.foamDictionary has been filtered out of the formation of the test
loop report so that false failures are not reported.
2020-07-24 14:11:32 +01:00
6c8732df5b dictionary: Set the default scoping syntax to 'slash'
The new optional 'slash' scoping syntax is now the default and provides a more
intuitive and flexible syntax than the previous 'dot' syntax, corresponding to
the common directory/file access syntax used in UNIX, providing support for
reading entries from other dictionary files.

In the 'slash' syntax
    '/' is the scope operator
    '../' is the parent dictionary scope operator
    '!' is the top-level dictionary scope operator

Examples:

    internalField 3.4;

    active
    {
        type            fixedValue;
        value.air       $internalField;
    }

    inactive
    {
        type            anotherFixedValue;

        value           $../active/value.air;
        anotherValue    $!active/value.air;

        sub
        {
            value           $../../active/value.air;
            anotherValue    $!active/value.air;
        }
    }

    "U.*"
    {
        solver GAMG;
    }

    e.air
    {
        $U.air;
    }

    external
    {
        value $testSlashDict2!active/value.air;
    }

    active2
    {
        $testSlashDict2!active;
    }

If there is a part of the keyword before the '!' then this is taken to be the
file name of the dictionary from which the entry will be looked-up using the
part of the keyword after the '!'.  For example given a file testSlashDict containing

    internalField 5.6;

    active
    {
        type            fixedValue;
        value.air       $internalField;
    }

entries from it can be read directly from another file, e.g.

    external
    {
        value $testSlashDict2!active/value.air;
    }

    active2
    {
        $testSlashDict2!active;
    }

    which expands to

    external
    {
        value           5.6;
    }

    active2
    {
        type            fixedValue;
        value.air       5.6;
    }

These examples are provided in applications/test/dictionary.

The the default syntax can be changed from 'slash' to 'dot' in etc/controlDict
to revert to the previous behaviour:

OptimisationSwitches
{
.
.
.
    // Default dictionary scoping syntax
    inputSyntax slash;  // Change to dot for previous behaviour
}

or within a specific dictionary by adding the entry

See applications/test/dictionary/testDotDict.
2020-07-23 20:36:51 +01:00
4ed94497d6 tutorials/multiphase/interFoam/planingHullW3: Scripting fixes for test loop 2020-07-21 14:09:26 +01:00
5e76801920 tutorials/multiphase/interFoam/planingHullW3: Corrected spelling of directory 2020-07-21 14:09:25 +01:00
b5db891c3e tutorials/incompressible/pimpleFoam/RAS/elipsekkLOmega/Allrun: Removed unnecessary rm 2020-07-21 12:24:10 +01:00
49ef558adb tutorials/heatTransfer/chtMultiRegionFoam/shellAndTubeHeatExchanger/constant/regionProperties: Corrected version 2020-07-21 12:23:41 +01:00
68e4678221 reactingTwoPhaseEulerFoam: Replaced by multiphaseEulerFoam
The reactingtTwoPhaseEulerFoam solver has been replaced by the more general
multiphaseEulerFoam solver which supports two-phase and multiphase systems
containing fluid and stationary phases, compressible or incompressible, with
heat and mass transfer, reactions, size distribution and all the usual phase
interaction and transfer models.

All reactingtTwoPhaseEulerFoam tutorials have been ported to multiphaseEulerFoam
to demonstrate two-phase capability with a wide range of phase and
phase-interaction models.

When running with two-phases the optional referencePhase entry in
phaseProperties can be used to specify which phase fraction should not be
solved, providing compatibility with reactingtTwoPhaseEulerFoam, see

tutorials/multiphase/multiphaseEulerFoam/RAS/fluidisedBed
tutorials/multiphase/multiphaseEulerFoam/laminar/bubbleColumn

for examples.
2020-07-17 20:18:15 +01:00
557f73a8e4 planningHullW3/Allrun: corrected handling of -test 2020-07-17 17:59:00 +01:00
9fd9172913 Rationalised the named of uncoupled particle tracing solvers and functionObject
Solvers
    icoUncoupledKinematicParcelFoam -> particleFoam
    uncoupledKinematicParcelFoam -> rhoParticleFoam

functionObjects
    icoUncoupledKinematicCloud -> particles
2020-07-16 13:06:08 +01:00
627a8caf5d planningHullW3/Allrun: Added dummy -test argument support 2020-07-16 00:06:18 +01:00
1d2f2aba3f flowWithOpenBoundary/Allrun: Added dummy -test argument support 2020-07-15 21:59:27 +01:00
49c9766c44 multiphaseEulerFoam: Updated name of functionObjects library 2020-07-15 20:53:05 +01:00
b832453b72 multiphaseEulerFoam: replacement for reactingMultiphaseEulerFoam
The new multiphaseEulerFoam is based on reactingMultiphaseEulerFoam with some
improvements and rationalisation to assist maintenance and further development.

The phase system solution has been enhanced to handle two phases more
effectively and all two-phase specific models updated for compatibility so that
multiphaseEulerFoam can also replace reactingTwoPhaseEulerFoam.
When running multiphaseEulerFoam with only two-phases the default behaviour is
to solve for both phase-fractions but optionally a reference phase can be
specified so that only the other phase-fraction is solved, providing better
compatibility with the behaviour of reactingTwoPhaseEulerFoam.

All reactingMultiphaseEulerFoam and reactingTwoPhaseEulerFoam tutorials have
been updated for multiphaseEulerFoam.
2020-07-15 18:13:40 +01:00
1d9ad9aa8e reactingEulerFoam::phaseSystem: Merged with multiphaseSystem
The base phaseSystem now provides all the functionality needed for
reactingMultiphaseEulerFoam and twoPhaseSystem is a specialisation, simplifying
maintenance.
2020-07-14 15:51:44 +01:00
35a04f0fb8 reactingEulerFoam::functionObjects::phaseMap: New functionObject to write the phase map field
Description
    This functionObject writes the phase-fraction map field alpha.map with
    incremental value ranges for each phase
    e.g., with values 0-1 for water, 1-2 for air, 2-3 for oil etc.

    Example of function object specification:
    \verbatim
    phaseMap
    {
        type            phaseMap;
        libs            ("libreactingEulerFoamFunctionObjects.so");
        writeControl    writeTime;
    }
    \endverbatim

Usage
    \table
        Property     | Description             | Required    | Default value
        type         | type name: phaseMap     | yes         |
    \endtable

This replaces the alphas functionality previously built-in to
reactingMultiphaseEulerFoam so that the storage, calculation and writing of the
phase map field is now under user control.
2020-07-14 10:18:00 +01:00
c3d72345fb reactingMultiphaseEulerFoam: Improved the handling of the optional referencePhase
The optional reference phase fraction field is not read even if the file is
present, it is constructed with "calculated" BCs as it is a derived field.  All
other phase fraction field files are read and now must be present.
2020-07-13 18:06:44 +01:00
4b959ba566 multiphaseEulerFoam: Superseded by the much more general and extensible reactingMultiphaseEulerFoam 2020-07-10 20:17:25 +01:00
2db948188f tutorials/multiphase/reactingMultiphaseEulerFoam: Added reactingTwoPhaseEulerFoam tutorials 2020-07-10 20:09:17 +01:00
2e62bfe5bc reactingMultiphaseEulerFoam: Updated remaining two-phase turbulent transport and IATE models
for compatibility with reactingMultiphaseEulerFoam when run with two-phases.
Some of these two-phase models could be enhanced to operate with multiple
dispersed phases in the future.

In order to update these models for reactingMultiphaseEulerFoam it has been
necessary to break compatibility with the now redundant twoPhaseEulerFoam solver
which has been superseded by the much more capable reactingEulerFoam solvers and
now removed.
2020-07-10 09:37:48 +01:00
2f30c1364b heatTransfer solvers: Added optional pressure reference
Added optional pressure reference pRef to p_rgh in buoyantPimpleFoam,
buoyantSimpleFoam and chtMultiRegionFoam which handles cases in which the
pressure variation is small compared to the pressure level more accurately.

The pRef value is provided in the optional constant/pRef file.

All tutorials and templates have been updated to use pRef as appropriate.
2020-07-03 15:41:58 +01:00
1611e0dbfb PLIC,MPLIC: New piecewise-linear interface compression schemes
A new family of interface compression interpolation schemes based on
piecewise-linear interface calculation (PLIC). PLIC represents an interface by
surface-cuts which split each cell to match the volume fraction of the phase in
that cell. The surface-cuts are oriented according to the point field of the
local phase fraction. The phase fraction on each cell face — the interpolated
value — is then calculated from the amount submerged below the surface-cut.

The basic PLIC method generates a single cut so cannot handle cells in which
there are multiple interfaces or where the interface is not fully resolved. In
those cells, the interpolation reverts to an alternative scheme, typically
standard interface compression. PLIC, with a fallback to interface compression,
produces robust solutions for real engineering cases. It can run with large time
steps so can solve problems like hydrodynamics of a planing hull, with rigid
body motion of the hull (above). The user selects PLIC by the following setting
in fvSchemes:

    div(phi,alpha)      Gauss PLIC interfaceCompression vanLeer 1;

The multicut PLIC (MPLIC) scheme extends PLIC to handle multiple
surface-cuts. Where a single cut is insufficient, MPLIC performs a topological
face-edge-face walk to produce multiple splits of a cell. If that is still
insufficient, MPLIC decomposes the cell into tetrahedrons on which the cuts are
applied. The extra cutting carries an additional computational cost but requires
no fallback. The user selects MPLIC by the following setting in the fvSchemes
file:

    div(phi,alpha)      Gauss MPLIC;

Variants of the PLIC and MPLIC schemes are also available which use velocities
at the face points to calculate the face flux. These PLICU and MPLICU schemes
are likely to be more accurate in regions of interface under high shear.

More details can be found here:
https://cfd.direct/openfoam/free-software/multiphase-interface-capturing

Jakub Knir
CFD Direct Ltd.
2020-07-02 13:24:05 +01:00
fa79bab863 interfaceCompression: New run-time selectable VoF interface compression scheme
A new run-time selectable interface compression scheme framework has been added
to the two-phase VoF solvers to provide greater flexibility, extensibility and
more consistent user-interface.  The previously built-in interface compression
is now in the standard run-time selectable surfaceInterpolationScheme
interfaceCompression:

Class
    Foam::interfaceCompression

Description
    Interface compression corrected scheme, based on counter-gradient
    transport, to maintain sharp interfaces during VoF simulations.

    The interface compression is applied to the face interpolated field from a
    suitable 2nd-order shape-preserving NVD or TVD scheme, e.g.  vanLeer or
    vanAlbada.  A coefficient is supplied to control the degree of compression,
    with a value of 1 suitable for most VoF cases to ensure interface integrity.
    A value larger than 1 can be used but the additional compression can bias
    the interface to follow the mesh more closely while a value smaller than 1
    can lead to interface smearing.

    Example:
    \verbatim
    divSchemes
    {
        .
        .
        div(phi,alpha)     Gauss interfaceCompression vanLeer 1;
        .
        .
    }
    \endverbatim

The separate scheme for the interface compression term "div(phirb,alpha)" is no
longer required or used nor is the compression coefficient cAlpha in fvSolution
as this is now part of the "div(phi,alpha)" scheme specification as shown above.

Backward-compatibility is provided by checking the specified "div(phi,alpha)"
scheme against the known interface compression schemes and if it is not one of
those the new interfaceCompression scheme is used with the cAlpha value
specified in fvSolution.

More details can be found here:
https://cfd.direct/openfoam/free-software/multiphase-interface-capturing

Henry G. Weller
CFD Direct Ltd.
2020-07-02 10:13:15 +01:00
70cfa1a47c Merge branch 'master' of github.com-OpenFOAM:OpenFOAM/OpenFOAM-dev 2020-07-02 09:45:06 +01:00
5ef8edfc0c tutorials/heatTransfer/chtMultiRegionFoam/reverseBurner: Changed to perfectGas
Only perfectGas and real-gas equations of state are consistent with standard
Janaf thermo data based on Cp.  Using other equations of state is possible but
the Janaf Cp data would have to be modified for consistency.
2020-07-02 09:42:07 +01:00
197b148010 flowWithOpenBoundary: tutorial case to explore p and U boundary conditions at an open boundary 2020-07-01 14:42:33 +01:00
4ad1559fff Updated thermal baffle tutorials to use internal energy 2020-06-11 00:08:29 +01:00
c109bec4cc chtMultiRegionFoam: Changed solid energy from enthalpy to internal energy
The solid is currently assumed incompressible (the solid pressure is not
updated) and in general would be near incompressible so internal energy is a
more appropriate energy choice than enthalpy which would require a pressure work
term currently not implemented.  Additionally due to the way in which the
conduction is handled in terms of the gradient of energy the accuracy of the
current enthalpy implementation is sensitive to the pressure distribution as
this introduces an enthalpy gradient from the p/rho term which would need to be
corrected; this issue is avoided by solving for internal energy instead.

This improvement requires the scheme and solver settings for the solids in
chtMultiRegionFoam cases to be changed from "h" to "e" and the thermo-physical
properties in <solid>/thermophysicalProperties to be set to the corresponding
internal energy forms, e.g.:

    thermo          eConst;
    .
    .
    .
    energy          sensibleInternalEnergy;

All tutorials have be updated to reflect this and provide guidance when updating
cases.
2020-06-10 15:38:54 +01:00
6f2a75b2f7 tutorials/compressible/rhoPimpleFoam/RAS/squareBendLiq: Set the rho solver to diagonal 2020-05-26 09:54:17 +01:00
1217724ed9 tutorials/incompressible/simpleFoam/pitzDaily/system/blockMeshDict: copy of $FOAM_TUTORIALS/resources/blockMesh/pitzDaily
Added a local copy of the $FOAM_TUTORIALS/resources/blockMesh/pitzDaily
corresponding to the OpenFOAM test instructions.

Resolves bug-report https://bugs.openfoam.org/view.php?id=3497
2020-05-18 15:40:25 +01:00
746c080603 VoF: Removed the isotropic compression option which has not proved useful for any cases 2020-05-09 14:41:15 +01:00
fe89082f73 thermophysicalModels: Centralised instantiation macros
All models that require templating on the thermodynamic model, including
the thermodynamic models themselves, are now instantiated using a
centralised set of variadic macros. Seven macros exist to instantiate
models for different classes of thermodynamics model. These are:

   forGases:          All model combinations valid for gases

   forCommonGases:    The most commonly used gas models

   forAbsoluteGases:  A limited selection of gas models with absolute
                      forms of energy, for use with Xi-combustion models

   forLiquids:        All model combinations valid for liquids

   forCommonLiquids:  The most commonly used liquid models

   forPolynomials:    Model combinations with properties fitted to
                      polynomials

   forSolids:         All model combinations valid for solids

All the *ThermoPhysics typedefs have been removed, as this system was
fundamentally not extensible. The enormous lists of thermodynamic
instantiations that existed for reaction thermos, chemistry models,
tabulation methods, etc..., were extremely difficult to read and reason
about what combinations are valid under what circumstances. This change
centralises those decisions, makes them concise and readable, and makes
them consistent across the entire codebase.

Soot model selection has now been brought up to date in line with
chemistry, combustion, and others. The angle-bracketed part of the name
is no longer necessary; this information is determined directly from the
existing thermo model. So, now to select a mixture-fraction soot model,
the entry is simply:

    sootModel   mixtureFraction;

Rather than:

    sootModel   mixtureFraction<rhoReactionThermo,gasHThermoPhysics>;

The only place in which *ThermoPhysics typedefs are still required in
the selection name is in the thermalBaffle1D boundary condition. Here
there is no thermo model from which to determine a name. This eventually
needs resolving either by adding a selection mechanism similar to that
of the thermo packages themselves, or by removing this boundary
condition in favour of the (non-1D) thermal baffle boundary condition
and region model.
2020-04-30 14:16:08 +01:00
cf358d7f99 tutorials/multiphase/reactingTwoPhaseEulerFoam/RAS/bubbleColumn: Removed alphap setting
The results with alphap = 0.3 are not physical, the case runs better with the
default alphap.
2020-04-20 17:09:05 +01:00
17f11090e2 aerofoilNACA0012 tutorial: added speed and angle of attack controls
and force coeffcients calculation
2020-04-17 19:01:46 +01:00