This is faster than the library functionality that it replaces, as it
allows the compiler to do inlining. It also does not utilise any static
state so generators do not interfere with each other. It is also faster
than the the array lookup in cachedRandom. The cachedRandom class
therefore offers no advantage over Random and has been removed.
Tree bound boxes are expanded asymmetrically to reduce the liklihood of
octree faces aliging with mesh faces and edges. The asymmetry is now
generated using hard-coded irrational numbers, rather than using a
random generator.
The asymmetry was effectively already hard coded. The random numbers are
only pseudo random, so the same numbers were being applied to the bound
boxes every time. This change simply removes the overhead of creating
the generator, and also gets rid of some duplicated code.
Changed the default region name from "domain" to "region" for consistency with
the rest of OpenFOAM.
Changed the multiple default region numbering to start from 1 rather than 0
because the top-level mesh in the case directory is always named "region0".
Changed the default region numbering to only relate to the default named regions
and does not increment for explicitly named regions. This avoids a naming
dependency on the default and named region order.
Added new option "-defaultRegionName <name>"
to specify the base name of the unspecified regions, defaults to "region"
The handling of species transfer within the interface-composition phase
change system has been sigificantly altered. The explicit-implicit
caching of the mass transfer has been removed and been replaced with
storage of an Su-Sp coefficient pair. The mass transfer is now generated
on the fly from these coefficients.
These fixes resolve a number of issues involving multiple species for
which the pimple loop did not converge to a conservative solution. It
also removes the requirement for a second evaluation of the mass
transfer after solution of the species fraction equations.
This work was supported by Zhen Li, at Evonik
This fixes a consistency issue in the interface-composition method, and
also seems to improve stability/convergence of the pimple iteration in
the presence of significant mass transfer.