The majority of input parameters now support automatic unit conversion.
Units are specified within square brackets, either before or after the
value. Primitive parameters (e.g., scalars, vectors, tensors, ...),
dimensioned types, fields, Function1-s and Function2-s all support unit
conversion in this way.
Unit conversion occurs on input only. OpenFOAM writes out all fields and
parameters in standard units. It is recommended to use '.orig' files in
the 0 directory to preserve user-readable input if those files are being
modified by pre-processing applications (e.g., setFields).
For example, to specify a volumetric flow rate inlet boundary in litres
per second [l/s], rather than metres-cubed per second [m^3/s], in 0/U:
boundaryField
{
inlet
{
type flowRateInletVelocity;
volumetricFlowRate 0.1 [l/s];
value $internalField;
}
...
}
Or, to specify the pressure field in bar, in 0/p:
internalField uniform 1 [bar];
Or, to convert the parameters of an Arrhenius reaction rate from a
cm-mol-kcal unit system, in constant/chemistryProperties:
reactions
{
methaneReaction
{
type irreversibleArrhenius;
reaction "CH4^0.2 + 2O2^1.3 = CO2 + 2H2O";
A 6.7e12 [(mol/cm^3)^-0.5/s];
beta 0;
Ea 48.4 [kcal/mol];
}
}
Or, to define a time-varying outlet pressure using a CSV file in which
the pressure column is in mega-pascals [MPa], in 0/p:
boundaryField
{
outlet
{
type uniformFixedValue;
value
{
type table;
format csv;
nHeaderLine 1;
units ([s] [MPa]); // <-- new units entry
columns (0 1);
mergeSeparators no;
file "data/pressure.csv";
outOfBounds clamp;
interpolationScheme linear;
}
}
...
}
(Note also that a new 'columns' entry replaces the old 'refColumn' and
'componentColumns'. This is is considered to be more intuitive, and has
a consistent syntax with the new 'units' entry. 'columns' and
'componentColumns' have been retained for backwards compatibility and
will continue to work for the time being.)
Unit definitions can be added in the global or case controlDict files.
See UnitConversions in $WM_PROJECT_DIR/etc/controlDict for examples.
Currently available units include:
Standard: kg m s K kmol A Cd
Derived: Hz N Pa J W g um mm cm km l ml us ms min hr mol
rpm bar atm kPa MPa cal kcal cSt cP % rad rot deg
A user-time unit is also provided if user-time is in operation. This
allows it to be specified locally whether a parameter relates to
real-time or to user-time. For example, to define a mass source that
ramps up from a given engine-time (in crank-angle-degrees [CAD]) over a
duration in real-time, in constant/fvModels:
massSource1
{
type massSource;
points ((1 2 3));
massFlowRate
{
type scale;
scale linearRamp;
start 20 [CAD];
duration 50 [ms];
value 0.1 [g/s];
}
}
Specified units will be checked against the parameter's dimensions where
possible, and an error generated if they are not consistent. For the
dimensions to be available for this check, the code requires
modification, and work propagating this change across OpenFOAM is
ongoing. Unit conversions are still possible without these changes, but
the validity of such conversions will not be checked.
Units are no longer permitted in 'dimensions' entries in field files.
These 'dimensions' entries can now, instead, take the names of
dimensions. The names of the available dimensions are:
Standard: mass length time temperature
moles current luminousIntensity
Derived: area volume rate velocity momentum acceleration density
force energy power pressure kinematicPressure
compressibility gasConstant specificHeatCapacity
kinematicViscosity dynamicViscosity thermalConductivity
volumetricFlux massFlux
So, for example, a 0/epsilon file might specify the dimensions as
follows:
dimensions [energy/mass/time];
And a 0/alphat file might have:
dimensions [thermalConductivity/specificHeatCapacity];
*** Development Notes ***
A unit conversion can construct trivially from a dimension set,
resulting in a "standard" unit with a conversion factor of one. This
means the functions which perform unit conversion on read can be
provided dimension sets or unit conversion objects interchangeably.
A basic `dict.lookup<vector>("Umean")` call will do unit conversion, but
it does not know the parameter's dimensions, so it cannot check the
validity of the supplied units. A corresponding lookup function has been
added in which the dimensions or units can be provided; in this case the
corresponding call would be `dict.lookup<vector>("Umean", dimVelocity)`.
This function enables additional checking and should be used wherever
possible.
Function1-s and Function2-s have had their constructors and selectors
changed so that dimensions/units must be specified by calling code. In
the case of Function1, two unit arguments must be given; one for the
x-axis and one for the value-axis. For Function2-s, three must be
provided.
In some cases, it is desirable (or at least established practice), that
a given non-standard unit be used in the absence of specific
user-defined units. Commonly this includes reading angles in degrees
(rather than radians) and reading times in user-time (rather than
real-time). The primitive lookup functions and Function1 and Function2
selectors both support specifying a non-standard default unit. For
example, `theta_ = dict.lookup<scalar>("theta", unitDegrees)` will read
an angle in degrees by default. If this is done within a model which
also supports writing then the write call must be modified accordingly
so that the data is also written out in degrees. Overloads of writeEntry
have been created for this purpose. In this case, the angle theta should
be written out with `writeEntry(os, "theta", unitDegrees, theta_)`.
Function1-s and Function2-s behave similarly, but with greater numbers
of dimensions/units arguments as before.
The non-standard user-time unit can be accessed by a `userUnits()`
method that has been added to Time. Use of this user-time unit in the
construction of Function1-s should prevent the need for explicit
user-time conversion in boundary conditions and sub-models and similar.
Some models might contain non-typed stream-based lookups of the form
`dict.lookup("p0") >> p0_` (e.g., in a re-read method), or
`Umean_(dict.lookup("Umean"))` (e.g., in an initialiser list). These
calls cannot facilitate unit conversion and are therefore discouraged.
They should be replaced with
`p0_ = dict.lookup<scalar>("p0", dimPressure)` and
`Umean_(dict.lookup<vector>("Umean", dimVelocity))` and similar whenever
they are found.
This function now looks up an alphaPhi field by default and exits with
an error if the field cannot be found. In order to solve for alphaPhi a
new 'solveAlphaPhi' switch has to be set.
The documentation has been updated to reflect the fact that the VoF
solvers now store all the alphaPhi fluxes necessary for a in-phase
equation to be constructed.
The phaseScalarTransport function has been added to the damBreakLaminar
tutorial.
This change makes multiphaseEuler more consistent with other modules and
makes its sub-libraries less inter-dependent. Some left-over references
to multiphaseEulerFoam have also been removed.
Description
Solver module to execute the \c functionObjects for a specified solver
The solver specified by either the \c subSolver or if not present the \c
solver entry in the \c controlDict is instantiated to provide the physical
fields needed by the \c functionObjects. The \c functionObjects are then
instantiated from the specifications are read from the \c functions entry in
the \c controlDict and executed in a time-loop also controlled by entries in
\c controlDict and the \c maxDeltaT() returned by the sub-solver.
The fields and other objects registered by the sub-solver are set to
NO_WRITE as they are not changed by the execution of the functionObjects and
should not be written out each write-time. Fields and other objects created
and changed by the execution of the functionObjects are written out.
solvers::functions in conjunction with the scalarTransport functionObject
replaces scalarTransportFoam and provide more general handling of the scalar
diffusivity.
The timeName() function simply returns the dimensionedScalar::name() which holds
the user-time name of the current time and now that timeName() is no longer
virtual the dimensionedScalar::name() can be called directly. The timeName()
function implementation is maintained for backward-compatibility.
The thermodynamic density field is now named "rho" by default and only renamed
"thermo:rho" by solvers that create and maintain a separate continuity density
field which is named "rho". This change significantly simplifies and
standardises the specification of schemes and boundary conditions requiring
density as it is now always named "rho" or "rho.<phase>" unless under some very
unusual circumstances the thermodynamic rather than continuity density is
required for a solver maintaining both.
The advantage of this change is particularly noticeable for multiphase
simulations in which each phase has its own density now named "rho.<phase>"
rather than "thermo:rho.<phase>" as separate phase continuity density fields are
not required so for multiphaseEulerFoam the scheme specification:
"div\(alphaRhoPhi.*,\(p\|thermo:rho.*\)\)" Gauss limitedLinear 1;
is now written:
"div\(alphaRhoPhi.*,\(p\|rho.*\)\)" Gauss limitedLinear 1;
the new fluidThermophysicalTransportModel and solidThermophysicalTransportModel
are derived from thermophysicalTransportModel providing a consistent and unified
interface for heat transport within and between regions. Coupled and external
heat-transfer boundary conditions can now be written independent of the
thermophysical properties or transport modelling of the regions providing
greater flexibility, simpler code and reduces the maintenance overhead.
The schemesField option:
- To employ the same numerical schemes as another field set
the \c schemesField entry,
works to set discretisation schemes and a standard linear solver and settings
but not MULES for which an entry in fvSolution under the actual field name is
required.
fvMesh is no longer derived from fvSchemes and fvSolution, these are now
demand-driven and accessed by the member functions schemes() and solution()
respectively. This means that the system/fvSchemes and system/fvSolution files
are no longer required during fvMesh constructions simplifying the mesh
generation and manipulation phase; theses files are read on the first call of
their access functions.
The fvSchemes member function names have also been simplified taking advantage
of the context in which they are called, for example
mesh.ddtScheme(fieldName) -> mesh.schemes().ddt(fieldName)
Description
Evolves a passive scalar transport equation.
- To specify the field name set the \c field entry
- To employ the same numerical schemes as another field set
the \c schemesField entry,
- The \c diffusivity entry can be set to \c none, \c constant, \c viscosity
- A constant diffusivity is specified with the \c D entry,
- If a momentum transport model is available and the \c viscosity
diffusivety option specified an effective diffusivity may be constructed
from the laminar and turbulent viscosities using the diffusivity
coefficients \c alphal and \c alphat:
\verbatim
D = alphal*nu + alphat*nut
\endverbatim
Example:
\verbatim
#includeFunc scalarTransport(T, alphaD=1, alphaDt=1)
\endverbatim
For incompressible flow the passive scalar may optionally be solved with the
MULES limiter and sub-cycling or semi-implicit in order to maintain
boundedness, particularly if a compressive, PLIC or MPLIC convection
scheme is used.
Example:
\verbatim
#includeFunc scalarTransport(tracer, diffusion=none)
with scheme specification:
div(phi,tracer) Gauss interfaceCompression vanLeer 1;
and solver specification:
tracer
{
nCorr 1;
nSubCycles 3;
MULESCorr no;
nLimiterIter 5;
applyPrevCorr yes;
solver smoothSolver;
smoother symGaussSeidel;
tolerance 1e-8;
relTol 0;
diffusion
{
solver smoothSolver;
smoother symGaussSeidel;
tolerance 1e-8;
relTol 0;
}
}
\endverbatim
With this change each functionObject provides the list of fields required so
that the postProcess utility can pre-load them before executing the list of
functionObjects. This provides a more convenient interface than using the
-field or -fields command-line options to postProcess which are now redundant.
to provide a single consistent code and user interface to the specification of
physical properties in both single-phase and multi-phase solvers. This redesign
simplifies usage and reduces code duplication in run-time selectable solver
options such as 'functionObjects' and 'fvModels'.
* physicalProperties
Single abstract base-class for all fluid and solid physical property classes.
Physical properties for a single fluid or solid within a region are now read
from the 'constant/<region>/physicalProperties' dictionary.
Physical properties for a phase fluid or solid within a region are now read
from the 'constant/<region>/physicalProperties.<phase>' dictionary.
This replaces the previous inconsistent naming convention of
'transportProperties' for incompressible solvers and
'thermophysicalProperties' for compressible solvers.
Backward-compatibility is provided by the solvers reading
'thermophysicalProperties' or 'transportProperties' if the
'physicalProperties' dictionary does not exist.
* phaseProperties
All multi-phase solvers (VoF and Euler-Euler) now read the list of phases and
interfacial models and coefficients from the
'constant/<region>/phaseProperties' dictionary.
Backward-compatibility is provided by the solvers reading
'thermophysicalProperties' or 'transportProperties' if the 'phaseProperties'
dictionary does not exist. For incompressible VoF solvers the
'transportProperties' is automatically upgraded to 'phaseProperties' and the
two 'physicalProperties.<phase>' dictionary for the phase properties.
* viscosity
Abstract base-class (interface) for all fluids.
Having a single interface for the viscosity of all types of fluids facilitated
a substantial simplification of the 'momentumTransport' library, avoiding the
need for a layer of templating and providing total consistency between
incompressible/compressible and single-phase/multi-phase laminar, RAS and LES
momentum transport models. This allows the generalised Newtonian viscosity
models to be used in the same form within laminar as well as RAS and LES
momentum transport closures in any solver. Strain-rate dependent viscosity
modelling is particularly useful with low-Reynolds number turbulence closures
for non-Newtonian fluids where the effect of bulk shear near the walls on the
viscosity is a dominant effect. Within this framework it would also be
possible to implement generalised Newtonian models dependent on turbulent as
well as mean strain-rate if suitable model formulations are available.
* visosityModel
Run-time selectable Newtonian viscosity model for incompressible fluids
providing the 'viscosity' interface for 'momentumTransport' models.
Currently a 'constant' Newtonian viscosity model is provided but the structure
supports more complex functions of time, space and fields registered to the
region database.
Strain-rate dependent non-Newtonian viscosity models have been removed from
this level and handled in a more general way within the 'momentumTransport'
library, see section 'viscosity' above.
The 'constant' viscosity model is selected in the 'physicalProperties'
dictionary by
viscosityModel constant;
which is equivalent to the previous entry in the 'transportProperties'
dictionary
transportModel Newtonian;
but backward-compatibility is provided for both the keyword and model
type.
* thermophysicalModels
To avoid propagating the unnecessary constructors from 'dictionary' into the
new 'physicalProperties' abstract base-class this entire structure has been
removed from the 'thermophysicalModels' library. The only use for this
constructor was in 'thermalBaffle' which now reads the 'physicalProperties'
dictionary from the baffle region directory which is far simpler and more
consistent and significantly reduces the amount of constructor code in the
'thermophysicalModels' library.
* compressibleInterFoam
The creation of the 'viscosity' interface for the 'momentumTransport' models
allows the complex 'twoPhaseMixtureThermo' derived from 'rhoThermo' to be
replaced with the much simpler 'compressibleTwoPhaseMixture' derived from the
'viscosity' interface, avoiding the myriad of unused thermodynamic functions
required by 'rhoThermo' to be defined for the mixture.
Same for 'compressibleMultiphaseMixture' in 'compressibleMultiphaseInterFoam'.
This is a significant improvement in code and input consistency, simplifying
maintenance and further development as well as enhancing usability.
Henry G. Weller
CFD Direct Ltd.
The MomentumTransportModels library now builds of a standard set of
phase-incompressible and phase-compressible models. This replaces most
solver-specific builds of these models.
This has been made possible by the addition of a new
"dynamicTransportModel" interface, from which all transport classes used
by the momentum transport models now derive. For the purpose of
disambiguation, the old "transportModel" has also been renamed
"kinematicTransportModel".
This change has been made in order to create a consistent definition of
phase-incompressible and phase-compressible MomentumTransportModels,
which can then be looked up by functionObjects, fvModels, and similar.
Some solvers still build specific momentum transport models, but these
are now in addition to the standard set. The solver does not build all
the models it uses.
There are also corresponding centralised builds of phase dependent
ThermophysicalTransportModels.
The new fvModels is a general interface to optional physical models in the
finite volume framework, providing sources to the governing conservation
equations, thus ensuring consistency and conservation. This structure is used
not only for simple sources and forces but also provides a general run-time
selection interface for more complex models such as radiation and film, in the
future this will be extended to Lagrangian, reaction, combustion etc. For such
complex models the 'correct()' function is provided to update the state of these
models at the beginning of the PIMPLE loop.
fvModels are specified in the optional constant/fvModels dictionary and
backward-compatibility with fvOption is provided by reading the
constant/fvOptions or system/fvOptions dictionary if present.
The new fvConstraints is a general interface to optional numerical constraints
applied to the matrices of the governing equations after construction and/or to
the resulting field after solution. This system allows arbitrary changes to
either the matrix or solution to ensure numerical or other constraints and hence
violates consistency with the governing equations and conservation but it often
useful to ensure numerical stability, particularly during the initial start-up
period of a run. Complex manipulations can be achieved with fvConstraints, for
example 'meanVelocityForce' used to maintain a specified mean velocity in a
cyclic channel by manipulating the momentum matrix and the velocity solution.
fvConstraints are specified in the optional system/fvConstraints dictionary and
backward-compatibility with fvOption is provided by reading the
constant/fvOptions or system/fvOptions dictionary if present.
The separation of fvOptions into fvModels and fvConstraints provides a rational
and consistent separation between physical and numerical models which is easier
to understand and reason about, avoids the confusing issue of location of the
controlling dictionary file, improves maintainability and easier to extend to
handle current and future requirements for optional complex physical models and
numerical constraints.
The reactingtTwoPhaseEulerFoam solver has been replaced by the more general
multiphaseEulerFoam solver which supports two-phase and multiphase systems
containing fluid and stationary phases, compressible or incompressible, with
heat and mass transfer, reactions, size distribution and all the usual phase
interaction and transfer models.
All reactingtTwoPhaseEulerFoam tutorials have been ported to multiphaseEulerFoam
to demonstrate two-phase capability with a wide range of phase and
phase-interaction models.
When running with two-phases the optional referencePhase entry in
phaseProperties can be used to specify which phase fraction should not be
solved, providing compatibility with reactingtTwoPhaseEulerFoam, see
tutorials/multiphase/multiphaseEulerFoam/RAS/fluidisedBed
tutorials/multiphase/multiphaseEulerFoam/laminar/bubbleColumn
for examples.
providing the shear-stress term in the momentum equation for incompressible and
compressible Newtonian, non-Newtonian and visco-elastic laminar flow as well as
Reynolds averaged and large-eddy simulation of turbulent flow.
The general deviatoric shear-stress term provided by the MomentumTransportModels
library is named divDevTau for compressible flow and divDevSigma (sigma =
tau/rho) for incompressible flow, the spherical part of the shear-stress is
assumed to be either included in the pressure or handled separately. The
corresponding stress function sigma is also provided which in the case of
Reynolds stress closure returns the effective Reynolds stress (including the
laminar contribution) or for other Reynolds averaged or large-eddy turbulence
closures returns the modelled Reynolds stress or sub-grid stress respectively.
For visco-elastic flow the sigma function returns the effective total stress
including the visco-elastic and Newtonian contributions.
For thermal flow the heat-flux generated by thermal diffusion is now handled by
the separate ThermophysicalTransportModels library allowing independent run-time
selection of the heat-flux model.
During the development of the MomentumTransportModels library significant effort
has been put into rationalising the components and supporting libraries,
removing redundant code, updating names to provide a more logical, consistent
and extensible interface and aid further development and maintenance. All
solvers and tutorials have been updated correspondingly and backward
compatibility of the input dictionaries provided.
Henry G. Weller
CFD Direct Ltd.
Following the generalisation of the TurbulenceModels library to support
non-Newtonian laminar flow including visco-elasticity and extensible to other
form of non-Newtonian behaviour the name TurbulenceModels is misleading and does
not properly represent how general the OpenFOAM solvers now are. The
TurbulenceModels now provides an interface to momentum transport modelling in
general and the plan is to rename it MomentumTransportModels and in preparation
for this the turbulenceProperties dictionary has been renamed momentumTransport
to properly reflect its new more general purpose.
The old turbulenceProperties name is supported for backward-compatibility.
Cached temporary objects are now registered from the moment of
construction. This means it is possible to use them before they go out
of scope. Non-cached temporaries are not registered, as before.
The check for the existence of requested cached objects is now done
after function object evaluation. This means that caching can be done on
fields generated by the function objects themselves without generating
warning messages.
The above, however, means that if an object isn't successfully cached
and it's lookup in a function fails, then the warning will not be
generated before the lookup raises an error. This could make diagnosing
the reason for such a failure more difficult. To remedy this the content
of the warning (i.e., the list of objects that are available for
caching) has been added to the lookup error message if the looked up
name is on the caching list. The same level of logged information is
therefore retained in the event of caching and lookup failures.
Currently these deleted function declarations are still in the private section
of the class declarations but will be moved by hand to the public section over
time as this is too complex to automate reliably.
This is like the scalarTrasport function except that the transported
scalar is confined to a single phase of a multiphase simulation. In
addition to the usual specification for the scalarTransport function
(i.e., a field, schemes and solution parameters), the user needs to
specify the phase-flux or a pressure field which can be used to generate
it.
Example usage for interFoam:
phaseScalarTransport1
{
type phaseScalarTransport;
libs ("libsolverFunctionObjects.so");
field s.water;
p p_rgh;
}
Example usage for reactingTwoPhaseEulerFoam:
phaseScalarTransport1
{
type phaseScalarTransport;
libs ("libsolverFunctionObjects.so");
field s.water;
alphaPhi alphaRhoPhi.water;
rho thermo:rho.water;
}
The function will write out both the per-unit-phase field that is solved
for (s.water in the above examples) and also the mixture-total field
(alphaS.water), which is often more convenient for post-processing.
Now for transient simulations "Final" solver settings are required for ALL
equations providing consistency between the solution of velocity, energy,
composition and radiation properties.
However "Final" relaxation factors are no longer required for fields or
equations and if not present the standard value for the variable will be
applied. Given that relaxation factors other than 1 are rarely required for
transient runs and hence the same for all iterations including the final one
this approach provide simpler input while still providing the flexibility to
specify a different value for the final iteration if required. For steady cases
it is usual to execute just 1 outer iteration per time-step for which the
standard relaxation factors are appropriate, and if more than one iteration is
executed it is common to use the same factors for both. In the unlikely event
of requiring different relaxation factors for the final iteration this is still
possible to specify via the now optional "Final" specification.
Description
Evolves a passive scalar transport equation.
- To specify the field name set the \c field entry
- To employ the same numerical schemes as another field set
the \c schemesField entry,
- A constant diffusivity may be specified with the \c D entry,
- Alternatively if a turbulence model is available a turbulent diffusivity
may be constructed from the laminar and turbulent viscosities using the
optional diffusivity coefficients \c alphaD and \c alphaDt (which default
to 1):
\verbatim
D = alphaD*nu + alphaDt*nut
\endverbatim
Resolves feature request https://bugs.openfoam.org/view.php?id=2453
Replaced the 'postProcess' argument to the 'write' and 'execute'
functions with the single static member 'postProcess' in the
functionObject base-class.