Currently these deleted function declarations are still in the private section
of the class declarations but will be moved by hand to the public section over
time as this is too complex to automate reliably.
Replaced all uses of complex Xfer class with C++11 "move" constructors and
assignment operators. Removed the now redundant Xfer class.
This substantial changes improves consistency between OpenFOAM and the C++11 STL
containers and algorithms, reduces memory allocation and copy overhead when
returning containers from functions and simplifies maintenance of the core
libraries significantly.
This is like the scalarTrasport function except that the transported
scalar is confined to a single phase of a multiphase simulation. In
addition to the usual specification for the scalarTransport function
(i.e., a field, schemes and solution parameters), the user needs to
specify the phase-flux or a pressure field which can be used to generate
it.
Example usage for interFoam:
phaseScalarTransport1
{
type phaseScalarTransport;
libs ("libsolverFunctionObjects.so");
field s.water;
p p_rgh;
}
Example usage for reactingTwoPhaseEulerFoam:
phaseScalarTransport1
{
type phaseScalarTransport;
libs ("libsolverFunctionObjects.so");
field s.water;
alphaPhi alphaRhoPhi.water;
rho thermo:rho.water;
}
The function will write out both the per-unit-phase field that is solved
for (s.water in the above examples) and also the mixture-total field
(alphaS.water), which is often more convenient for post-processing.
The dynamic code functionality has been generalised so that the names of
the code entries in the specifying dictionary can be set by the caller.
This means that functions which utilise dynamic code but use different
entry names (e.g., codedFunctionObject uses codeExecute, codeEnd,
etc..., instead of code) now function correctly. The differently named
entries now form part of the library hash, and re-building triggers
appropriately as they are modified.
Registration occurs when the temporary field is transferred to a non-temporary
field via a constructor or if explicitly transferred to the database via the
regIOobject "store" methods.
This object calculates a field of the age of fluid in the domain; i.e.,
the time taken for a fluid particle to travel to a location from an
inlet. It outputs a field, named age, with dimensions of time, and
requires a solver and a div(phi,age) scheme to be specified. A number of
corrections for the solution procedure can be set, as well as the name
of the flux and density fields.
Example specification:
age1
{
type age;
libs ("libfieldFunctionObjects.so");
nCorr 10;
phi phi;
rho rho;
}
Example usage:
postProcess -func age -fields "(phi)" -latestTime
This work was supported by Robert Secor and Lori Holmes, at 3M
Now for transient simulations "Final" solver settings are required for ALL
equations providing consistency between the solution of velocity, energy,
composition and radiation properties.
However "Final" relaxation factors are no longer required for fields or
equations and if not present the standard value for the variable will be
applied. Given that relaxation factors other than 1 are rarely required for
transient runs and hence the same for all iterations including the final one
this approach provide simpler input while still providing the flexibility to
specify a different value for the final iteration if required. For steady cases
it is usual to execute just 1 outer iteration per time-step for which the
standard relaxation factors are appropriate, and if more than one iteration is
executed it is common to use the same factors for both. In the unlikely event
of requiring different relaxation factors for the final iteration this is still
possible to specify via the now optional "Final" specification.
By default the prefix is no longer added to the field names but the previous
behaviour can be reproduced by setting the optional "prefix" entry to "on" or
"yes".
Description
Calculates the natural logarithm of the specified scalar field.
Performs \f$ln(max(x, a))\f$ where \f$x\f$ is the field and \f$a\f$ an
optional clip to handle 0 or negative \f$x\f$.
The etc/caseDicts/postProcessing/fields/log configuration file is provided so
that the simple #includeFunc can be used to execute this functionObject during
the run, e.g. for some dimensionless field x
functions
{
#includeFunc log(x)
}
or if x might be 0 or negative in some regions the optional clip may be applied:
functions
{
#includeFunc log(p,clip=1e-6)
}
The projection direction has been corrected to include the effect of
mesh motion. The case where the source and receiving faces are of
differing orientations and the particle displacement points into both is
now detected and handled.
The sampled sets have been renamed in a more explicit and consistent
manner, and two new ones have also been added. The available sets are as
follows:
arcUniform: Uniform samples along an arc. Replaces "circle", and
adds the ability to sample along only a part of the circle's
circumference. Example:
{
type arcUniform;
centre (0.95 0 0.25);
normal (1 0 0);
radial (0 0 0.25);
startAngle -1.57079633;
endAngle 0.52359878;
nPoints 200;
axis x;
}
boundaryPoints: Specified point samples associated with a subset of
the boundary. Replaces "patchCloud". Example:
{
type boundaryPoints;
patches (inlet1 inlet2);
points ((0 -0.05 0.05) (0 -0.05 0.1) (0 -0.05 0.15));
maxDistance 0.01;
axis x;
}
boundaryRandom: Random samples within a subset of the boundary.
Replaces "patchSeed", but changes the behaviour to be entirely
random. It does not seed the boundary face centres first. Example:
{
type boundaryRandom;
patches (inlet1 inlet2);
nPoints 1000;
axis x;
}
boxUniform: Uniform grid of samples within a axis-aligned box.
Replaces "array". Example:
{
type boxUniform;
box (0.95 0 0.25) (1.2 0.25 0.5);
nPoints (2 4 6);
axis x;
}
circleRandom: Random samples within a circle. New. Example:
{
type circleRandom;
centre (0.95 0 0.25);
normal (1 0 0);
radius 0.25;
nPoints 200;
axis x;
}
lineFace: Face-intersections along a line. Replaces "face". Example:
{
type lineFace;
start (0.6 0.6 0.5);
end (0.6 -0.3 -0.1);
axis x;
}
lineCell: Cell-samples along a line at the mid-points in-between
face-intersections. Replaces "midPoint". Example:
{
type lineCell;
start (0.5 0.6 0.5);
end (0.5 -0.3 -0.1);
axis x;
}
lineCellFace: Combination of "lineFace" and "lineCell". Replaces
"midPointAndFace". Example:
{
type lineCellFace;
start (0.55 0.6 0.5);
end (0.55 -0.3 -0.1);
axis x;
}
lineUniform: Uniform samples along a line. Replaces "uniform".
Example:
{
type lineUniform;
start (0.65 0.3 0.3);
end (0.65 -0.3 -0.1);
nPoints 200;
axis x;
}
points: Specified points. Replaces "cloud" when the ordered flag is
false, and "polyLine" when the ordered flag is true. Example:
{
type points;
points ((0 -0.05 0.05) (0 -0.05 0.1) (0 -0.05 0.15));
ordered yes;
axis x;
}
sphereRandom: Random samples within a sphere. New. Example:
{
type sphereRandom;
centre (0.95 0 0.25);
radius 0.25;
nPoints 200;
axis x;
}
triSurfaceMesh: Samples from all the points of a triSurfaceMesh.
Replaces "triSurfaceMeshPointSet". Example:
{
type triSurfaceMesh;
surface "surface.stl";
axis x;
}
The headers have also had documentation added. Example usage and a
description of the control parameters now exists for all sets.
In addition, a number of the algorithms which generate the sets have
been refactored or rewritten. This was done either to take advantage of
the recent changes to random number generation, or to remove ad-hoc
fixes that were made unnecessary by the barycentric tracking algorithm.
This is faster than the library functionality that it replaces, as it
allows the compiler to do inlining. It also does not utilise any static
state so generators do not interfere with each other. It is also faster
than the the array lookup in cachedRandom. The cachedRandom class
therefore offers no advantage over Random and has been removed.