Commit Graph

23 Commits

Author SHA1 Message Date
4221e43dfc combustion: Removed Qdot field from solvers
The Qdot field has been removed from all reacting solvers, in favour of
computing on the fly whenever it is needed. It can still be generated
for post-processing purposes by means of the Qdot function object. This
change reduces code duplication and storage for all modified solvers.

The Qdot function object has been applied to a number of tutorials in
order to retain the existing output.

A fix to Qdot has also been applied for multi-phase cases.
2019-01-24 14:29:17 +00:00
ee443e201f Rationalised the handling of "Final" solver and relaxation factor settings
Now for transient simulations "Final" solver settings are required for ALL
equations providing consistency between the solution of velocity, energy,
composition and radiation properties.

However "Final" relaxation factors are no longer required for fields or
equations and if not present the standard value for the variable will be
applied.  Given that relaxation factors other than 1 are rarely required for
transient runs and hence the same for all iterations including the final one
this approach provide simpler input while still providing the flexibility to
specify a different value for the final iteration if required.  For steady cases
it is usual to execute just 1 outer iteration per time-step for which the
standard relaxation factors are appropriate, and if more than one iteration is
executed it is common to use the same factors for both.  In the unlikely event
of requiring different relaxation factors for the final iteration this is still
possible to specify via the now optional "Final" specification.
2018-11-17 19:42:23 +00:00
06d8f79814 coneInjection: Combined cone and coneNozzle injections
coneInjection has been extended to include the functionality of
coneNozzleInjection, and the latter has been removed.

Some parameters have changed names. The "positionAxis" entry from
coneInjection has been removed in preferance of coneNozzleInjection's
single "position" and "direction" entries. This means that only one
injection site is possible per model (dictionary substitutions mean that
only minimal additions are required to add further injection sites with
the same parameters). The name of the velocity magnitude has been
standardised as "Umag" and "innerDiameter" and "outerDiamater" have been
renamed "dInner" and "dOuter" for consistency with the inner and outer
spray angles.

Velocity magnitude and diameters are no longer read when they are not
required.

The randomisation has been altered so that the injections generate a
uniform distribution on an cross section normal to the direction of
injection. Previously there was an unexplained bias towards the
centreline.

An example specification with a full list of parameters is shown below.

    injectionModels
    {
        model1
        {
            type            coneInjection;

            // Times
            SOI             0;
            duration        1;

            // Quantities
            massTotal       0; // <-- not used with these settings
            parcelBasisType fixed;
            parcelsPerSecond 1000000;
            flowRateProfile constant 1;
            nParticle       1;

            // Sizes
            sizeDistribution
            {
                type        fixedValue;
                fixedValueDistribution
                {
                    value   0.0025;
                }
            }

            // Geometry
            positions       (-0.15 -0.1 0);
            directions      (1 0 0);
            thetaInner      0;
            thetaOuter      45;
            // - Inject at a point
            injectionMethod point;
            // - Or, inject over a disc:
            /*
            injectionMethod disc;
            dInner          0;
            dOuter          0.05;
            */

            // Velocity
            // - Inject with constant velocity
            flowType        constantVelocity;
            Umag            1;
            // - Or, inject with flow rate and discharge coefficient
            //   This also requires massTotal, dInner and dOuter
            /*
            flowType        flowRateAndDischarge;
            Cd              0.9;
            */
            // - Or, inject at a pressure
            /*
            flowType        pressureDrivenVelocity;
            Pinj            10e5;
            */
        }

        model2
        {
            // The same as model1, but at a different position
            $model1;
            position        (-0.15 0.1 0);
        }
    }
2018-11-12 15:02:03 +00:00
d627582dd6 combustionModel: Removed the deprecated "active" switch.
To switch-off combustion choose the "noCombustion" model selected with the name
"none" in the combustionProperties file:

combustionModel none;
2018-07-26 10:55:10 +01:00
ab31777e9c radiation: Removed the redundant "radiation off" switch from radiationProperties
To switch-off radiation set

    radiationModel  none;

in radiationProperties which instantiates "null" model that does not read any
data or coefficients or evaluate any fields.
2018-07-25 08:10:30 +01:00
fdbf3c134f Rationalized dictionary and configuration file headers 2018-07-09 15:40:05 +01:00
bf54ab67e1 Updated OpenFOAM Foundation web-link in headers 2018-07-06 21:42:54 +01:00
019ae8bab3 tutorials: Changed compressed ascii output to binary to improve IO performance
also rationalized the writeCompression specification
2018-06-27 15:25:52 +01:00
15a2e7f6e9 combustionModel, chemistryModel: Simplified model selection
Updated all tutorials to the new format
2017-12-11 15:20:47 +00:00
95574a6c6b liquidProperties, solidProperties: Simplified input
The entries for liquid and solid species can now be simply be the name unless
property coefficients are overridden in which are specified in a dictionary as
before e.g. in the tutorials/lagrangian/coalChemistryFoam/simplifiedSiwek case
the water is simply specified

liquids
{
    H2O;
}

and solid ash uses standard coefficients but the coefficients for carbon are
overridden thus

solids
{
    C
    {
        rho             2010;
        Cp              710;
        kappa           0.04;
        Hf              0;
        emissivity      1.0;
    }

    ash;
}
2017-02-18 12:43:10 +00:00
081f1784f9 liquidProperties: Simplified dictionary format
The defaultCoeffs entry is now redundant and supported only for backward
compatibility.  To specify a liquid with default coefficients simply leave the
coefficients dictionary empty:

    liquids
    {
        H2O {}
    }

Any or all of the coefficients may be overridden by specifying the properties in
the coefficients dictionary, e.g.

    liquids
    {
        H2O
        {
            rho
            {
                a 1000;
                b 0;
                c 0;
                d 0;
            }
        }
    }
2017-02-17 22:08:42 +00:00
6f338ed716 PaSR: Removed deprecated "turbulentReaction" switch
To run with laminar reaction rates choose the "laminar" combustion model rather
than setting "turbulentReaction no;" in the "PaSR" model.
2017-01-20 17:17:14 +00:00
c339d3018c PBiCGStab: New preconditioned bi-conjugate gradient stabilized solver for asymmetric lduMatrices
using a run-time selectable preconditioner

References:
    Van der Vorst, H. A. (1992).
    Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG
    for the solution of nonsymmetric linear systems.
    SIAM Journal on scientific and Statistical Computing, 13(2), 631-644.

    Barrett, R., Berry, M. W., Chan, T. F., Demmel, J., Donato, J.,
    Dongarra, J., Eijkhout, V., Pozo, R., Romine, C. & Van der Vorst, H.
    (1994).
    Templates for the solution of linear systems:
    building blocks for iterative methods
    (Vol. 43). Siam.

See also: https://en.wikipedia.org/wiki/Biconjugate_gradient_stabilized_method

Tests have shown that PBiCGStab with the DILU preconditioner is more
robust, reliable and shows faster convergence (~2x) than PBiCG with
DILU, in particular in parallel where PBiCG occasionally diverges.

This remarkable improvement over PBiCG prompted the update of all
tutorial cases currently using PBiCG to use PBiCGStab instead.  If any
issues arise with this update please report on Mantis: http://bugs.openfoam.org
2016-09-05 11:46:42 +01:00
a1cc51b116 Tutorials fvSolution files: removed solver entries which use default
values; formatted Switch entries consistently across all cases
2016-06-15 07:39:37 +01:00
cc942ed18e chemkinReader: Add support for reading transport properties from dictionary
Note the dictionary is in OpenFOAM format not CHEMKIN.

Patch provided by Daniel Jasinski
Resolves feature request http://www.openfoam.org/mantisbt/view.php?id=1888
2015-11-20 18:55:36 +00:00
d0e45416e0 tutorials: Removed unnecessary "boundary" files 2015-11-13 20:05:37 +00:00
2b1ee6b497 tutorials: Removed unnecessary spaces between parentheses and values in vectors 2015-07-21 20:55:44 +01:00
ecee2d275e Input of dimensionedScalars: update read-construction of dimensionedScalar in applications
so that the specification of the name and dimensions are optional in property dictionaries.

Update tutorials so that the name of the dimensionedScalar property is
no longer duplicated but optional dimensions are still provided and are
checked on read.
2015-07-20 22:52:53 +01:00
dc0523643f fluxRequired: Added setFluxRequired function to fvSchemes class
Added calls to setFluxRequired for p, p_rgh etc. in all solvers which
avoids the need to add fluxRequired entries in fvSchemes dictionaries.
2015-07-15 21:57:16 +01:00
3a3c29b284 blockMesh: Change default location of blockMeshDict from constant/polyMesh to system
For multi-region cases the default location of blockMeshDict is now system/<region name>

If the blockMeshDict is not found in system then the constant directory
is also checked providing backward-compatibility
2015-04-24 22:29:57 +01:00
74990ee915 Rationalized sprayFoam family of solvers and added sprayDyMFoam 2015-02-16 21:47:15 +00:00
93732c8af4 Updated the whole of OpenFOAM to use the new templated TurbulenceModels library
The old separate incompressible and compressible libraries have been removed.

Most of the commonly used RANS and LES models have been upgraded to the
new framework but there are a few missing which will be added over the
next few days, in particular the realizable k-epsilon model.  Some of
the less common incompressible RANS models have been introduced into the
new library instantiated for incompressible flow only.  If they prove to
be generally useful they can be templated for compressible and
multiphase application.

The Spalart-Allmaras DDES and IDDES models have been thoroughly
debugged, removing serious errors concerning the use of S rather than
Omega.

The compressible instances of the models have been augmented by a simple
backward-compatible eddyDiffusivity model for thermal transport based on
alphat and alphaEff.  This will be replaced with a separate run-time
selectable thermal transport model framework in a few weeks.

For simplicity and ease of maintenance and further development the
turbulent transport and wall modeling is based on nut/nuEff rather than
mut/muEff for compressible models so that all forms of turbulence models
can use the same wall-functions and other BCs.

All turbulence model selection made in the constant/turbulenceProperties
dictionary with RAS and LES as sub-dictionaries rather than in separate
files which added huge complexity for multiphase.

All tutorials have been updated so study the changes and update your own
cases by comparison with similar cases provided.

Sorry for the inconvenience in the break in backward-compatibility but
this update to the turbulence modeling is an essential step in the
future of OpenFOAM to allow more models to be added and maintained for a
wider range of cases and physics.  Over the next weeks and months more
turbulence models will be added of single and multiphase flow, more
additional sub-models and further development and testing of existing
models.  I hope this brings benefits to all OpenFOAM users.

Henry G. Weller
2015-01-21 19:21:39 +00:00
446e5777f0 Add the OpenFOAM source tree 2014-12-10 22:40:10 +00:00