Field settings can now be specified within
createNonConformalCouplesDict. This allows for patchType overrides; for
example to create a jump condition over the coupling.
An alternate syntax has been added to facilitate this. If patch fields
do not need overriding then the old syntax can be used where patches
that are to be coupled are specified as a pair of names; e.g.:
fields yes;
nonConformalCouples
{
fan
{
patches (fan0 fan1);
transform none;
}
}
If patch fields do need overriding, then instead of the "patches" entry,
separate "owner" and "neighbour" sub-dictionaries should be used. These
can both contain a "patchFields" section detailing the boundary
conditions that apply to the newly created patches:
fields yes;
nonConformalCouples
{
fan
{
owner
{
patch fan0;
patchFields
{
p
{
type fanPressureJump;
patchType nonConformalCyclic;
jump uniform 0;
value uniform 0;
jumpTable polynomial 1((100 0));
}
}
}
neighbour
{
patch fan1;
patchFields
{
$../../owner/patchFields;
}
}
transform none;
}
}
In this example, only the pressure boundary condition is overridden on
the newly created non-conformal cyclic. All other fields will have the
basic constraint type (i.e., nonConformalCyclic) applied.
executed with foamRun for single region simulations of foamMultiRun for
multi-region simulations. Replaces pimpleFoam, pisoFoam and simpleFoam and all
the corresponding tutorials have been updated and moved to
tutorials/modules/incompressibleFluid.
Class
Foam::solvers::incompressibleFluid
Description
Solver module for steady or transient turbulent flow of incompressible
isothermal fluids with optional mesh motion and change.
Uses the flexible PIMPLE (PISO-SIMPLE) solution for time-resolved and
pseudo-transient and steady simulations.
Optional fvModels and fvConstraints are provided to enhance the simulation
in many ways including adding various sources, constraining or limiting
the solution.
Reference:
\verbatim
Greenshields, C. J., & Weller, H. G. (2022).
Notes on Computational Fluid Dynamics: General Principles.
CFD Direct Ltd.: Reading, UK.
\endverbatim
SourceFiles
incompressibleFluid.C
See also
Foam::solvers::fluidSolver
Foam::solvers::isothermalFluid