Commit Graph

150 Commits

Author SHA1 Message Date
da3f4cc92e fvModels, fvConstraints: Rational separation of fvOptions between physical modelling and numerical constraints
The new fvModels is a general interface to optional physical models in the
finite volume framework, providing sources to the governing conservation
equations, thus ensuring consistency and conservation.  This structure is used
not only for simple sources and forces but also provides a general run-time
selection interface for more complex models such as radiation and film, in the
future this will be extended to Lagrangian, reaction, combustion etc.  For such
complex models the 'correct()' function is provided to update the state of these
models at the beginning of the PIMPLE loop.

fvModels are specified in the optional constant/fvModels dictionary and
backward-compatibility with fvOption is provided by reading the
constant/fvOptions or system/fvOptions dictionary if present.

The new fvConstraints is a general interface to optional numerical constraints
applied to the matrices of the governing equations after construction and/or to
the resulting field after solution.  This system allows arbitrary changes to
either the matrix or solution to ensure numerical or other constraints and hence
violates consistency with the governing equations and conservation but it often
useful to ensure numerical stability, particularly during the initial start-up
period of a run.  Complex manipulations can be achieved with fvConstraints, for
example 'meanVelocityForce' used to maintain a specified mean velocity in a
cyclic channel by manipulating the momentum matrix and the velocity solution.

fvConstraints are specified in the optional system/fvConstraints dictionary and
backward-compatibility with fvOption is provided by reading the
constant/fvOptions or system/fvOptions dictionary if present.

The separation of fvOptions into fvModels and fvConstraints provides a rational
and consistent separation between physical and numerical models which is easier
to understand and reason about, avoids the confusing issue of location of the
controlling dictionary file, improves maintainability and easier to extend to
handle current and future requirements for optional complex physical models and
numerical constraints.
2021-03-07 22:45:01 +00:00
aa4151d649 Function1: Added squarePulse
This function gives a value of one during a user-specified duration, and
zero at all other times. It is useful for defining the time range in
which an injection or ignition heat source or similar operates.

Example usage, scaling a value:

    <name>
    {
        type        scale;
        scale       squarePulse;
        start       0;
        duration    1;
        value       100;
    }

This function has been utilised in a number of tutorial fvOption
configurations to provide a specific window in which the fvOption is
applied. This was previously achieved by "timeStart" and "duration"
controls hard coded into the fvOptions themselves.
2021-02-09 20:02:21 +00:00
07f5080f2e fvOptions: Remove type restrictions and rewrite of field-name handling
A number of fvOptions that apply to a user-derined field can now
automatically work what primitive type they apply to. These options can
apply to any field type, and in some cases even multiple fields of
differing type. Example usage of the options to which this change
applies are shown below:

    codedSource1
    {
        type            codedSource;
        name            codedSource1;

        field           h;

        ...
    }

    fixedValueConstraint1
    {
        type            fixedValueConstraint;

        fieldValues
        {
            R           (1 0 0 1 0 1);
            epsilon     150;
        }

        ...
    }

    phaseLimitStabilization11
    {
        type            phaseLimitStabilization;

        field           sigma.liquid;

        ...
    }

Previously to apply to a given type, these options had to be selected
with the name of the type prepended to the option name (e.g., "type
symmTensorPhaseLimitStabilization;") and those that operated on multiple
fields were restricted to those fields being of the same type.

A number of other options have had improvements made to their handling
of user specification of fields. Where possible, the option will now
attempt to work out what field the option applies to automatically. The
following options, therefore, no longer require "field" or "fields"
entries:

    actuationDiskSource
    buoyancyEnergy
    buoyancyForce
    meanVelocityForce
    rotorDiskSource
    volumeFractionSource
    constantHeatTransfer
    function2HeatTransfer
    variableHeatTransfer

Non-standard field names can be overridden in the same way as in
boundary conditions; e.g., the velocity name can be overridden with a "U
<UName>;" entry if it does not have the default name, "U". The name of
the energy field is now always determined from the thermodynamics
model and should always be correct. Some options that can be applied to
an individual phase also support a "phase <phaseName>;" entry;

fvOptions field-name handling has been rewritten to increase its
flexibility and to improve warning messages. The flexibility now allows
for options that apply to all fields, or all fields of a given phase,
rather than being limited to a specific list of field names. Messages
warning about options that have not been applied now always print just
once per time-step.
2021-02-09 16:53:26 +00:00
66c62e9296 searchableSurface: Renamed geometry directory triSurface -> geometry
Originally the only supported geometry specification were triangulated surfaces,
hence the name of the directory: constant/triSurface, however now that other
surface specifications are supported and provided it is much more logical that
the directory is named accordingly: constant/geometry.  All tutorial and
template cases have been updated.

Note that backward compatibility is provided such that if the constant/geometry
directory does not exist but constant/triSurface does then the geometry files
are read from there.
2021-02-04 13:51:48 +00:00
9e947d1644 topoSet: Renamed point entries for cylinder sources
End points of topoSet cylinder sources should now be specified as
"point1" and "point2", which is consistent with other parts of the code.

The previous keywords, "p1" and "p2" have been retained for backwards
compatibility but may be removed in future.
2021-01-14 08:33:57 +00:00
d43375f648 tutorials: Updated air mass-fraction composition 2021-01-08 13:18:56 +00:00
d6477085d7 coolingCylinder2D: reverted change to initial U 2021-01-06 11:08:32 +00:00
a4d1b58e82 coolingCylinder2D: Flow initialization update. 2021-01-05 13:20:52 +00:00
3b4ea79e67 coolingCylinder2D: New conjugate heat transfer example of a solid cylinder cooled by water.
This tutorial demonstrates multi-region meshing using blockMesh and
solves transient heat transfer to steady-state.
2020-12-17 15:47:37 +00:00
87db97d020 Merge branch 'master' of github.com-OpenFOAM:OpenFOAM/OpenFOAM-dev 2020-12-17 10:42:08 +00:00
984830768d radiation: Changes thermal solvers to select radiation via fvOptions
This simplifies and standardises the handling of radiation in all solvers which
include an energy equation, all of which now support radiation via the
'radiation' fvOption which is selected in the constant/fvOption or
constant/<region>/fvOption file:

radiation
{
    type    radiation;
    libs    ("libradiationModels.so");
}

The radiation model, parameters, settings and sub-models are specified in the
'radiationProperties' file as before.
2020-12-17 10:33:10 +00:00
6379011ee1 tutorials: Removed redundant entry neighbourFieldName from compressible::turbulentTemperatureCoupledBaffleMixed boundary types. 2020-12-16 17:19:08 +00:00
828b81f809 coolingSphere, singleFluidCHT: Replaced text manipulations in Allclean with foamDictionary 2020-12-08 12:45:44 +00:00
19b3a5c385 Sub-models, fvOptions: Removed 'active' switch
It is better to not select and instantiate a model, fvOption etc. than to create
it and set it inactive as the creation process requires reading of settings,
parameters, fields etc. with all the associated specification and storage
without being used.  Also the incomplete implementation added a lot of
complexity in the low-level operation of models introducing a significant
maintenance overhead and development overhead for new models.
2020-12-01 18:50:20 +00:00
095054d82e applications/solvers/combustion: Moved the inertSpecie functionality into basicSpecieMixture
and renamed defaultSpecie as its mass fraction is derived from the sum of the
mass fractions of all other species and it need not be inert but must be present
everywhere, e.g. N2 in air/fuel combustion which can be involved in the
production of NOx.

The previous name inertSpecie in thermophysicalProperties is supported for
backward compatibility.
2020-10-26 20:57:01 +00:00
f1a4caa3fb tutorials/heatTransfer/chtMultiRegionFoam/shellAndTubeHeatExchanger: Updated for changes to solid heat-flux 2020-09-25 21:13:21 +01:00
f15d150ca8 chtMultiRegionFoam, heSolidThermo: Moved the solid heat flux model into heSolidThermo
and changed to be an energy implicit correction to a temperature gradient
based heat-flux.  This formulation is both energy conservative and temperature
consistent.

The wallHeatFlux functionObject has been updated to use a consistent heat-flux
from the heSolidThermo.
2020-09-25 16:09:18 +01:00
747cea6d0f ThermophysicalTransportModels: Added temperature gradient based heat flux models
Fourier, eddyDiffusivity and nonUnityLewisEddyDiffusivity thermophysical
transport models now apply an implicit energy correction to a temperature
gradient based heat-flux to provide computational stability and efficiency while
converging to temperature gradient based solution.  This ensures consistent heat
exchange between fluid and solid regions in CHT cases and with heat-flux
boundaries.

The Fourier and eddyDiffusivity models support single specie systems only
whereas nonUnityLewisEddyDiffusivity supports specie diffusion with independent
specification of turbulent Prandtl and Schmidt numbers, i.e. non-unity Lewis
number.

The unityLewisFourier and unityLewisEddyDiffusivity thermophysical transport
models use an implicit energy gradient based heat-flux which is optimal for
numerical stability and convergence but does not guarantee consistent heat
exchange between fluid and solid regions and heat-flux boundaries in the
presence of gradients of heat capacity.  Both of these models support specie
diffusion with the restriction that the laminar and turbulent Prandtl and
Schmidt numbers are equal, i.e. unity Lewis number.

The thermophysical transport model is specified in the optional
thermophysicalTransport dictionary; if this file is not present the
unityLewisFourier model is selected for laminar and unityLewisEddyDiffusivity
for turbulent cases for backward compatibility.

The chtMultiRegionFoam tutorial cases have been updated to use the most
appropriate of the new thermophysical transport models.
2020-09-23 16:15:38 +01:00
51d763685e thermophysicalModels: Removed pressure field from solid thermos
Solid thermo no longer requires a pressure field, so solid regions of
chtMultiRegionFoam cases no longer need a 0/<solidRegionName>/p file.

In order for solidThermo to continue to use heThermo and the low level
thermo classes, it now constructs a uniformGeometricScalarField for the
pressure with the value NaN. This is passed into the low-level thermo
models by heThermo. The enforces the requirement that low-level thermo
models used by solidThermo should have no pressure dependence. If an
instantiation is made with pressure dependence, the code will fail with
a floating point error.
2020-08-07 12:32:20 +01:00
ff20398245 fvOptions: Changed the source, constraint and correct functions to const
Most fvOptions change the state of the fields and equations they are applied to
but do not change internal state so it makes more sense that the interface is
const, consistent with MeshObjects.  For the few fvOptions which do maintain a
changing state the member data is now mutable.
2020-08-04 15:40:40 +01:00
5f3c604d05 reactingParticleFoam: Support singleComponentMixtures
This is useful for testing purposes in comparison with rhoPimpleFoam.

Also made a fix to the handling of multivariate convection schemes in
chtMultiRegionFoam.
2020-07-31 11:38:59 +01:00
bddd829fc2 chemistrySolver::EulerImplicit: Updated to use the StandardChemistryModel reaction Jacobian 2020-07-29 19:09:40 +01:00
36731b2fe9 tutorials: Prevent foamDictionary output from printing during test loop
foamDictionary executions are now wrapped by runApplication like any
other execution so that they do not print during a test loop.
foamDictionary does not produce a conforming log, however, so
log.foamDictionary has been filtered out of the formation of the test
loop report so that false failures are not reported.
2020-07-24 14:11:32 +01:00
6c8732df5b dictionary: Set the default scoping syntax to 'slash'
The new optional 'slash' scoping syntax is now the default and provides a more
intuitive and flexible syntax than the previous 'dot' syntax, corresponding to
the common directory/file access syntax used in UNIX, providing support for
reading entries from other dictionary files.

In the 'slash' syntax
    '/' is the scope operator
    '../' is the parent dictionary scope operator
    '!' is the top-level dictionary scope operator

Examples:

    internalField 3.4;

    active
    {
        type            fixedValue;
        value.air       $internalField;
    }

    inactive
    {
        type            anotherFixedValue;

        value           $../active/value.air;
        anotherValue    $!active/value.air;

        sub
        {
            value           $../../active/value.air;
            anotherValue    $!active/value.air;
        }
    }

    "U.*"
    {
        solver GAMG;
    }

    e.air
    {
        $U.air;
    }

    external
    {
        value $testSlashDict2!active/value.air;
    }

    active2
    {
        $testSlashDict2!active;
    }

If there is a part of the keyword before the '!' then this is taken to be the
file name of the dictionary from which the entry will be looked-up using the
part of the keyword after the '!'.  For example given a file testSlashDict containing

    internalField 5.6;

    active
    {
        type            fixedValue;
        value.air       $internalField;
    }

entries from it can be read directly from another file, e.g.

    external
    {
        value $testSlashDict2!active/value.air;
    }

    active2
    {
        $testSlashDict2!active;
    }

    which expands to

    external
    {
        value           5.6;
    }

    active2
    {
        type            fixedValue;
        value.air       5.6;
    }

These examples are provided in applications/test/dictionary.

The the default syntax can be changed from 'slash' to 'dot' in etc/controlDict
to revert to the previous behaviour:

OptimisationSwitches
{
.
.
.
    // Default dictionary scoping syntax
    inputSyntax slash;  // Change to dot for previous behaviour
}

or within a specific dictionary by adding the entry

See applications/test/dictionary/testDotDict.
2020-07-23 20:36:51 +01:00
49ef558adb tutorials/heatTransfer/chtMultiRegionFoam/shellAndTubeHeatExchanger/constant/regionProperties: Corrected version 2020-07-21 12:23:41 +01:00
2f30c1364b heatTransfer solvers: Added optional pressure reference
Added optional pressure reference pRef to p_rgh in buoyantPimpleFoam,
buoyantSimpleFoam and chtMultiRegionFoam which handles cases in which the
pressure variation is small compared to the pressure level more accurately.

The pRef value is provided in the optional constant/pRef file.

All tutorials and templates have been updated to use pRef as appropriate.
2020-07-03 15:41:58 +01:00
5ef8edfc0c tutorials/heatTransfer/chtMultiRegionFoam/reverseBurner: Changed to perfectGas
Only perfectGas and real-gas equations of state are consistent with standard
Janaf thermo data based on Cp.  Using other equations of state is possible but
the Janaf Cp data would have to be modified for consistency.
2020-07-02 09:42:07 +01:00
4ad1559fff Updated thermal baffle tutorials to use internal energy 2020-06-11 00:08:29 +01:00
c109bec4cc chtMultiRegionFoam: Changed solid energy from enthalpy to internal energy
The solid is currently assumed incompressible (the solid pressure is not
updated) and in general would be near incompressible so internal energy is a
more appropriate energy choice than enthalpy which would require a pressure work
term currently not implemented.  Additionally due to the way in which the
conduction is handled in terms of the gradient of energy the accuracy of the
current enthalpy implementation is sensitive to the pressure distribution as
this introduces an enthalpy gradient from the p/rho term which would need to be
corrected; this issue is avoided by solving for internal energy instead.

This improvement requires the scheme and solver settings for the solids in
chtMultiRegionFoam cases to be changed from "h" to "e" and the thermo-physical
properties in <solid>/thermophysicalProperties to be set to the corresponding
internal energy forms, e.g.:

    thermo          eConst;
    .
    .
    .
    energy          sensibleInternalEnergy;

All tutorials have be updated to reflect this and provide guidance when updating
cases.
2020-06-10 15:38:54 +01:00
de66b1be68 MomentumTransportModels: Update of the TurbulenceModels library for all flow types
providing the shear-stress term in the momentum equation for incompressible and
compressible Newtonian, non-Newtonian and visco-elastic laminar flow as well as
Reynolds averaged and large-eddy simulation of turbulent flow.

The general deviatoric shear-stress term provided by the MomentumTransportModels
library is named divDevTau for compressible flow and divDevSigma (sigma =
tau/rho) for incompressible flow, the spherical part of the shear-stress is
assumed to be either included in the pressure or handled separately.  The
corresponding stress function sigma is also provided which in the case of
Reynolds stress closure returns the effective Reynolds stress (including the
laminar contribution) or for other Reynolds averaged or large-eddy turbulence
closures returns the modelled Reynolds stress or sub-grid stress respectively.
For visco-elastic flow the sigma function returns the effective total stress
including the visco-elastic and Newtonian contributions.

For thermal flow the heat-flux generated by thermal diffusion is now handled by
the separate ThermophysicalTransportModels library allowing independent run-time
selection of the heat-flux model.

During the development of the MomentumTransportModels library significant effort
has been put into rationalising the components and supporting libraries,
removing redundant code, updating names to provide a more logical, consistent
and extensible interface and aid further development and maintenance.  All
solvers and tutorials have been updated correspondingly and backward
compatibility of the input dictionaries provided.

Henry G. Weller
CFD Direct Ltd.
2020-04-14 20:44:22 +01:00
7f5144312e Renamed turbulenceProperties -> momentumTransport
Following the generalisation of the TurbulenceModels library to support
non-Newtonian laminar flow including visco-elasticity and extensible to other
form of non-Newtonian behaviour the name TurbulenceModels is misleading and does
not properly represent how general the OpenFOAM solvers now are.  The
TurbulenceModels now provides an interface to momentum transport modelling in
general and the plan is to rename it MomentumTransportModels and in preparation
for this the turbulenceProperties dictionary has been renamed momentumTransport
to properly reflect its new more general purpose.

The old turbulenceProperties name is supported for backward-compatibility.
2020-04-10 17:17:37 +01:00
b6f91de72c semiImplicitSource: Made operable on multiple different types
The scalarSemiImplicitSource, vectorSemiImplicitSource, etc...,
fvOptions have been replaced by a single semiImplicitSource fvOption.
This allows sources to be specified for multiple fields regardless of
type. For example:

    massSource
    {
        type            semiImplicitSource;

        timeStart       1;
        duration        500;

        selectionMode   points;
        points
        (
            (0.075 0.2 0.05)
        );

        volumeMode      absolute;

        sources
        {
            thermo:rho.steam
            {
                explicit    1.0e-3; // kg/s
                implicit    0;
            }

            U.steam
            {
                explicit    (0 1e-1 0); // kg*m/s^2
                implicit    0;
            }

            h.steam
            {
                explicit    3700; // kg*m^2/s^3
                implicit    0;
            }
        }
    }
2020-04-07 17:02:27 +01:00
b7b678bceb tutorials: Updated the momentum transport model type selection
renaming the legacy keywords
    RASModel -> model
    LESModel -> model
    laminarModel -> model

which is simpler and clear within the context in which they are specified, e.g.

RAS
{
    model               kOmegaSST;
    turbulence          on;
    printCoeffs         on;
}

rather than

RAS
{
    RASModel            kOmegaSST;
    turbulence          on;
    printCoeffs         on;
}

The old keywords are supported for backward compatibility.
2020-04-07 13:11:50 +01:00
95b5ef4458 fvOptions::SemiImplicitSource: Added support for Function1 specifications of the explicit and implicit sources
This significant improvement is flexibility of SemiImplicitSource required a
generalisation of the source specification syntax and all tutorials have been
updated accordingly.

Description
    Semi-implicit source, described using an input dictionary.  The injection
    rate coefficients are specified as pairs of Su-Sp coefficients, i.e.

        \f[
            S(x) = S_u + S_p x
        \f]

    where
    \vartable
        S(x)    | net source for field 'x'
        S_u     | explicit source contribution
        S_p     | linearised implicit contribution
    \endvartable

    Example tabulated heat source specification for internal energy:
    \verbatim
    volumeMode      absolute; // specific
    sources
    {
        e
        {
            explicit table ((0 0) (1.5 $power));
            implicit 0;
        }
    }
    \endverbatim

    Example coded heat source specification for enthalpy:
    \verbatim
    volumeMode      absolute; // specific
    sources
    {
        h
        {
            explicit
            {
                type coded;
                name heatInjection;
                code
                #{
                    // Power amplitude
                    const scalar powerAmplitude = 1000;

                    // x is the current time
                    return mag(powerAmplitude*sin(x));
                #};
            }
            implicit 0;
        }
    }
    \endverbatim
2020-04-01 18:53:09 +01:00
19c9b59c4a tutorials/heatTransfer/buoyantSimpleFoam/buoyantCavity: Swapped the frontAndBack and topAndBottom patch names 2020-02-09 14:36:10 +00:00
612164005d foamDictionary: Removed the -disableFunctionEntries option 2019-11-19 13:28:40 +00:00
ba49dfa991 Reactions: Removed "Reaction" from the end of the reaction names
This part of the name is unnecessary, as it is clear from context that
the name refers to a reaction. The selector has been made backwards
compatible so that old names will still read successfuly.
2019-10-25 10:37:13 +01:00
280c055ef6 functionObjects::comfort: New functionObject to calculate fields relating to thermal comfort
Description
    Calculates the thermal comfort quantities predicted mean vote (PMV) and
    predicted percentage of dissatisfaction (PPD) based on DIN ISO EN 7730:2005.

Usage
    \table
        Property      | Description                  | Required  | Default value
        clothing      | The insulation value of the cloth | no   | 0
        metabolicRate | The metabolic rate      | no        | 0.8
        extWork       | The external work        | no        | 0
        Trad          | Radiation temperature | no | -1
        relHumidity   | Relative humidity of the air | no | 50
        pSat          | Saturation pressure of water | no | -1
        tolerance     | Residual control for the cloth temperature | no | 1e-5
        maxClothIter  | Maximum number of iterations | no       | 0
        meanVelocity  | Use a constant mean velocity in the whole domain | no |\
        false
    \endtable

    \table
        Predicted Mean Vote (PMV)   | evaluation
        + 3                         | hot
        + 2                         | warm
        + 1                         | slightly warm
        + 0                         | neutral
        - 1                         | slightly cool
        - 2                         | cool
        - 3                         | cold
    \endtable

    \verbatim
    comfortAnalysis
    {
        type            comfort;
        libs            ("libfieldFunctionObjects.so");

        executeControl  writeTime;
        writeControl    writeTime;
    }
    \endverbatim

The new tutorial case heatTransfer/buoyantSimpleFoam/comfortHotRoom is provided
to demonstrate the calculation of PMV and PPD using the comfort functionObject.

This work is based on code and case contributed by Tobias Holzmann.
2019-10-19 23:08:34 +01:00
9b21cf6993 tutorials/heatTransfer/buoyantSimpleFoam/iglooWithFridges: Improved convergence 2019-10-18 16:25:12 +01:00
dbe9fb3b76 functionObjectList: Removed warning for optional entries
Simplified the residuals functionObject call in the tutorials
2019-09-01 21:16:37 +01:00
4817971e13 rPolynomial: New equation of state for liquids and solids
Description
    Reciprocal polynomial equation of state for liquids and solids

    \f[
        1/\rho = C_0 + C_1 T + C_2 T^2 - C_3 p - C_4 p T
    \f]

    This polynomial for the reciprocal of the density provides a much better fit
    than the equivalent polynomial for the density and has the advantage that it
    support coefficient mixing to support liquid and solid mixtures in an
    efficient manner.

Usage
    \table
        Property     | Description
        C            | Density polynomial coefficients
    \endtable

    Example of the specification of the equation of state for pure water:
    \verbatim
    equationOfState
    {
        C (0.001278 -2.1055e-06 3.9689e-09 4.3772e-13 -2.0225e-16);
    }
    \endverbatim
    Note: This fit is based on the small amount of data which is freely
    available for the range 20-65degC and 1-100bar.

This equation of state is a much better fit for water and other liquids than
perfectFluid and in general polynomials for the reciprocal of the density
converge much faster than polynomials of the density.  Currently rPolynomial is
quadratic in the temperature and linear in the pressure which is sufficient for
modest ranges of pressure typically encountered in CFD but could be extended to
higher order in pressure and/temperature if necessary.  The other huge advantage
in formulating the equation of state in terms of the reciprocal of the density
is that coefficient mixing is simple.

Given these advantages over the perfectFluid equation of state the libraries and
tutorial cases have all been updated to us rPolynomial rather than perfectFluid
for liquids and water in particular.
2019-08-31 11:57:17 +01:00
20d2492c0e tutorials/heatTransfer, lagrangian: replaced the icoPolynomial with perfectGas for air
and with perfectFluid for water.  These choices are more accurate and easier to
specify than icoPolynomial and provide correct mixing.
2019-08-28 16:58:29 +01:00
670776693c temperatureCoupledBase: Rationalised the handling of kappa
kappa is now obtained from the fluidThermo for laminar regions, the turbulence
model for turbulent regions and the solidThermo for solid regions.  The "lookup"
option previously supported allowed for energy-temperature inconsistent and
incorrect specification of kappa and was not used.  Without this incorrect
option there is now no need to specify a kappaMethod thus significantly
simplifying the use boundary conditions derived from temperatureCoupledBase.
2019-08-07 21:47:51 +01:00
05208f64dc StandardChemistryModel: Separate the reaction system from the mixture thermodynamics
This allows much greater flexibility in the instantiation of reaction system
which may in general depend on fields other than the thermodynamic state.  This
also simplifies mixture thermodynamics removing the need for the reactingMixture
and the instantiation of all the thermodynamic package combinations depending on
it.
2019-08-03 15:11:00 +01:00
5acfe8b20a reactingMixture: Rationalised the reading of the species thermo and reactions
which are now read directly from the thermophysicalProperties dictionary for
consistency with non-reacting mixture thermodynamics.  The species thermo and
reactions lists can still be in separate files if convenient and included into
the thermophysicalProperties file using the standard dictionary #include.
2019-08-02 22:47:45 +01:00
4baf73b54d reactingMixture: use the foamChemistryReader directly rather than chemistryReader::New
This formalises the flexible and extensible OpenFOAM thermodynamics and reaction
format as the direct input to OpenFOAM solvers.  The CHEMKIN format is still
supported by first converting to the OpenFOAM format using the chemkinToFoam
utility.
2019-08-02 14:47:37 +01:00
e947e4d301 tutorials: Updated to use the new dictionary "slash" syntax 2019-07-11 19:44:29 +01:00
96b69f6f88 Standardised and rationalised the way in which units are written in function documentation 2019-06-20 10:54:14 +01:00
9bf34679bd buoyantBoussinesq[SP]impleFoam: replaced by the more general buoyant[SP]impleFoam solvers
With the selection of the Boussinesq equation of state the general buoyancy
solvers buoyantSimpleFoam and buoyantPimpleFoam can be used instead of the
specialised Boussinesq solvers avoiding the need for special implementation of
thermal and pressure boundary conditions and providing support for radiation and
fvOptions which would not have been feasible or practical in the Boussinesq
solvers.

Other incompressible equations of state are also supported; for most gaseous
problems the incompressiblePerfectGas equation of state is likely to be more
accurate than the Boussinesq equation of state.

The buoyantBoussinesq[SP]impleFoam tutorials have been updated and moved to the
corresponding buoyant[SP]impleFoam directories.
2019-03-26 21:42:14 +00:00
a3fd68eed0 tutorials: shellAndTubeHeatExchanger: Update due to change in snappyHexMesh writeFlags 2019-02-12 11:35:31 +00:00