to provide a single consistent code and user interface to the specification of
physical properties in both single-phase and multi-phase solvers. This redesign
simplifies usage and reduces code duplication in run-time selectable solver
options such as 'functionObjects' and 'fvModels'.
* physicalProperties
Single abstract base-class for all fluid and solid physical property classes.
Physical properties for a single fluid or solid within a region are now read
from the 'constant/<region>/physicalProperties' dictionary.
Physical properties for a phase fluid or solid within a region are now read
from the 'constant/<region>/physicalProperties.<phase>' dictionary.
This replaces the previous inconsistent naming convention of
'transportProperties' for incompressible solvers and
'thermophysicalProperties' for compressible solvers.
Backward-compatibility is provided by the solvers reading
'thermophysicalProperties' or 'transportProperties' if the
'physicalProperties' dictionary does not exist.
* phaseProperties
All multi-phase solvers (VoF and Euler-Euler) now read the list of phases and
interfacial models and coefficients from the
'constant/<region>/phaseProperties' dictionary.
Backward-compatibility is provided by the solvers reading
'thermophysicalProperties' or 'transportProperties' if the 'phaseProperties'
dictionary does not exist. For incompressible VoF solvers the
'transportProperties' is automatically upgraded to 'phaseProperties' and the
two 'physicalProperties.<phase>' dictionary for the phase properties.
* viscosity
Abstract base-class (interface) for all fluids.
Having a single interface for the viscosity of all types of fluids facilitated
a substantial simplification of the 'momentumTransport' library, avoiding the
need for a layer of templating and providing total consistency between
incompressible/compressible and single-phase/multi-phase laminar, RAS and LES
momentum transport models. This allows the generalised Newtonian viscosity
models to be used in the same form within laminar as well as RAS and LES
momentum transport closures in any solver. Strain-rate dependent viscosity
modelling is particularly useful with low-Reynolds number turbulence closures
for non-Newtonian fluids where the effect of bulk shear near the walls on the
viscosity is a dominant effect. Within this framework it would also be
possible to implement generalised Newtonian models dependent on turbulent as
well as mean strain-rate if suitable model formulations are available.
* visosityModel
Run-time selectable Newtonian viscosity model for incompressible fluids
providing the 'viscosity' interface for 'momentumTransport' models.
Currently a 'constant' Newtonian viscosity model is provided but the structure
supports more complex functions of time, space and fields registered to the
region database.
Strain-rate dependent non-Newtonian viscosity models have been removed from
this level and handled in a more general way within the 'momentumTransport'
library, see section 'viscosity' above.
The 'constant' viscosity model is selected in the 'physicalProperties'
dictionary by
viscosityModel constant;
which is equivalent to the previous entry in the 'transportProperties'
dictionary
transportModel Newtonian;
but backward-compatibility is provided for both the keyword and model
type.
* thermophysicalModels
To avoid propagating the unnecessary constructors from 'dictionary' into the
new 'physicalProperties' abstract base-class this entire structure has been
removed from the 'thermophysicalModels' library. The only use for this
constructor was in 'thermalBaffle' which now reads the 'physicalProperties'
dictionary from the baffle region directory which is far simpler and more
consistent and significantly reduces the amount of constructor code in the
'thermophysicalModels' library.
* compressibleInterFoam
The creation of the 'viscosity' interface for the 'momentumTransport' models
allows the complex 'twoPhaseMixtureThermo' derived from 'rhoThermo' to be
replaced with the much simpler 'compressibleTwoPhaseMixture' derived from the
'viscosity' interface, avoiding the myriad of unused thermodynamic functions
required by 'rhoThermo' to be defined for the mixture.
Same for 'compressibleMultiphaseMixture' in 'compressibleMultiphaseInterFoam'.
This is a significant improvement in code and input consistency, simplifying
maintenance and further development as well as enhancing usability.
Henry G. Weller
CFD Direct Ltd.
When using 'simple' or 'hierarchical' decomposition it is useful to slightly rotate a
coordinate-aligned block-mesh to improve the processor boundaries by avoiding
irregular cell distribution at those boundaries. The degree of slight rotation
is controlled by the 'delta' coefficient and a value of 0.001 is generally
suitable so to avoid unnecessary clutter in 'decomposeParDict' 'delta' now
defaults to this value.
The new algorithm provides robust quality triangulations of non-convex
polygons. It also produces a best attempt for polygons that are badly
warped or self intersecting by minimising the area in which the local
normal is in the opposite direction to the overal polygon normal. It is
memory efficient when applied to multiple polygons as it maintains and
reuses its workspace.
This algorithm replaces implementations in the face and
faceTriangulation classes, which have been removed.
Faces can no longer be decomposed into mixtures of tris and
quadrilaterals. Polygonal faces with more than 4 sides are now
decomposed into triangles in foamToVTK and in paraFoam.
The FOAM file format has not changed from version 2.0 in many years and so there
is no longer a need for the 'version' entry in the FoamFile header to be
required and to reduce unnecessary clutter it is now optional, defaulting to the
current file format 2.0.
cpp is no longer used to pre-process Make/files files allowing standard make '#'
syntax for comments, 'ifdef', 'ifndef' conditionals etc. This is make possible
by automatically pre-pending SOURCE += to each of the source file names in
Make/files.
The list of source files compile can be specified either as a simple list of
files in Make/files e.g.
# Note: fileMonitor assumes inotify by default. Compile with -DFOAM_USE_STAT
# to use stat (=timestamps) instead of inotify
fileMonitor.C
ifdef SunOS64
dummyPrintStack.C
else
printStack.C
endif
LIB = $(FOAM_LIBBIN)/libOSspecific
or
or directly as the SOURCE entry which is used in the Makefile:
SOURCE = \
adjointOutletPressure/adjointOutletPressureFvPatchScalarField.C \
adjointOutletVelocity/adjointOutletVelocityFvPatchVectorField.C \
adjointShapeOptimizationFoam.C
EXE = $(FOAM_APPBIN)/adjointShapeOptimizationFoam
In either form make syntax for comments and conditionals is supported.
so that it can be included directly into the wmake Makefile to allow full
support of gmake syntax, variables, functions etc.
The Make/files file handled in the same manner as the Make/options file if it
contains the SOURCE entry otherwise it is first processed by cpp for backward
compatibility.
The standard set of Lagrangian clouds are now selectable at run-time.
This means that a solver that supports Lagrangian modelling can now use
any type of cloud (with some restrictions). Previously, solvers were
hard-coded to use specific cloud modelling. In addition, a cloud-list
structure has been added so that solvers may select multiple clouds,
rather than just one.
The new system is controlled as follows:
- If only a single cloud is required, then the settings for the
Lagrangian modelling should be placed in a constant/cloudProperties
file.
- If multiple clouds are required, then a constant/clouds file should be
created containing a list of cloud names defined by the user. Each
named cloud then reads settings from a corresponding
constant/<cloudName>Properties file. Clouds are evolved sequentially
in the order in which they are listed in the constant/clouds file.
- If no clouds are required, then the constant/cloudProperties file and
constant/clouds file should be omitted.
The constant/cloudProperties or constant/<cloudName>Properties files are
the same as previous cloud properties files; e.g.,
constant/kinematicCloudProperties or constant/reactingCloud1Properties,
except that they now also require an additional top-level "type" entry
to select which type of cloud is to be used. The available options for
this entry are:
type cloud; // A basic cloud of solid
// particles. Includes forces,
// patch interaction, injection,
// dispersion and stochastic
// collisions. Same as the cloud
// previously used by
// rhoParticleFoam
// (uncoupledKinematicParticleFoam)
type collidingCloud; // As "cloud" but with resolved
// collision modelling. Same as the
// cloud previously used by DPMFoam
// and particleFoam
// (icoUncoupledKinematicParticleFoam)
type MPPICCloud; // As "cloud" but with MPPIC
// collision modelling. Same as the
// cloud previously used by
// MPPICFoam.
type thermoCloud; // As "cloud" but with
// thermodynamic modelling and heat
// transfer with the carrier phase.
// Same as the limestone cloud
// previously used by
// coalChemistryFoam.
type reactingCloud; // As "thermoCloud" but with phase
// change and mass transfer
// coupling with the carrier
// phase. Same as the cloud
// previously used in fireFoam.
type reactingMultiphaseCloud; // As "reactingCloud" but with
// particles that contain multiple
// phases. Same as the clouds
// previously used in
// reactingParcelFoam and
// simpleReactingParcelFoam and the
// coal cloud used in
// coalChemistryFoam.
type sprayCloud; // As "reactingCloud" but with
// additional spray-specific
// collision and breakup modelling.
// Same as the cloud previously
// used in sprayFoam and
// engineFoam.
The first three clouds are not thermally coupled, so are available in
all Lagrangian solvers. The last four are thermally coupled and require
access to the carrier thermodynamic model, so are only available in
compressible Lagrangian solvers.
This change has reduced the number of solvers necessary to provide the
same functionality; solvers that previously differed only in their
Lagrangian modelling can now be combined. The Lagrangian solvers have
therefore been consolidated with consistent naming as follows.
denseParticleFoam: Replaces DPMFoam and MPPICFoam
reactingParticleFoam: Replaces sprayFoam and coalChemistryFoam
simpleReactingParticleFoam: Replaces simpleReactingParcelFoam
buoyantReactingParticleFoam: Replaces reactingParcelFoam
fireFoam and engineFoam remain, although fireFoam is likely to be merged
into buoyantReactingParticleFoam in the future once the additional
functionality it provides is generalised.
Some additional minor functionality has also been added to certain
solvers:
- denseParticleFoam has a "cloudForceSplit" control which can be set in
system/fvOptions.PIMPLE. This provides three methods for handling the
cloud momentum coupling, each of which have different trade-off-s
regarding numerical artefacts in the velocity field. See
denseParticleFoam.C for more information, and also bug report #3385.
- reactingParticleFoam and buoyantReactingParticleFoam now support
moving mesh in order to permit sharing parts of their implementation
with engineFoam.
Description
Non-uniform tabulated property function that linearly interpolates between
the values.
To speed-up the search of the non-uniform table a uniform jump-table is
created on construction which is used for fast indirect addressing into
the table.
Usage
\nonUniformTable
Property | Description
values | List of (temperature property) value pairs
\endnonUniformTable
Example for the density of water between 280 and 350K
\verbatim
rho
{
type nonUniformTable;
values
(
(280 999.87)
(300 995.1)
(350 973.7)
);
}
\endverbatim
to splice the SlicedGeometricField into a complete contiguous Field.
e.g. to splice the flux field phi:
scalarField completePhi
(
slicedSurfaceScalarField
(
IOobject
(
"slicedPhi",
runTime.timeName(),
mesh
),
phi,
false
).splice()
);
Integral evaluations have been implemented for all the ramp function1-s,
as well as the sine and square wave. Bounds handling has also been added
to the integration of table-type functions.
In addition, the sine wave "t0" paramater has been renamed "start" for
consistency with the ramp functions.
The general distribution has been extended to accept cumulative
distribution data, by means of a "cumulative" switch. The calculation of
the mean value has also been corrected for this distribution, and
additional header documentation and parameter checking has been added.
In addition, the distribution models now all print some basic
information (min, max and mean) into the log file to help in checking
that the specification is correct.
Patch contributed by Timo Niemi, VTT.
In order to avoid conflict with the use of ':' in model-specific fields,
e.g. "thermo:rho", in the "slash" syntax the '!' character is now used to refer
to the top-level dictionary.
If there is a part of the keyword before the '!' then this is taken to be the
file name of the dictionary from which the entry will be looked-up using the
part of the keyword after the '!'.
For example, given a dictionary file named testSlashDict2:
internalField 5.6;
active
{
type fixedValue;
value.air $internalField;
}
it is now possible to read entries from it directly in the dictionary file testSlashDict:
external
{
value $testSlashDict2!active/value.air;
}
active2
{
$testSlashDict2!active;
}
which expands to
external
{
value 5.6;
}
active2
{
type fixedValue;
value.air 5.6;
}
A new optional "slash" scoping syntax is now provided which is more intuitive
than the current "dot" syntax as it corresponds to the common directory/file
access syntax used in UNIX, and avoids limitations of the "dot" (see below)
e.g.
internalField 3.4;
active
{
type fixedValue;
value.air $internalField;
}
inactive
{
type anotherFixedValue;
value $../active/value.air;
anotherValue $:active/value.air;
sub
{
value $../../active/value.air;
anotherValue $:active/value.air;
}
}
"U.*"
{
solver GAMG;
}
e.air
{
// This does expand
$U.air;
}
"#inputSyntax slash;" selects the new "slash" syntax.
"../" refers to the parent directory.
":" refers to the top-level directory.
The corresponding dictionary using the current "dot" syntax is
internalField 3.4;
active
{
type fixedValue;
value.air $internalField;
}
inactive
{
type anotherFixedValue;
value $..active.value.air;
anotherValue $:active.value.air;
sub
{
value $...active.value.air;
anotherValue $:active.value.air;
}
}
"U.*"
{
solver GAMG;
}
e.air
{
// This doesn't expand
$U.air;
}
Note that the "$U.air" expansion does not work in this case due to the
interference between the use of '.' for scoping and phase-name.
This is a fundamental problem which prompted the development of the new more
intuitive and flexible "slash" syntax.
The new syntax also allows a for planned future development to access entries
in directories in other files, e.g.
active
{
type fixedValue;
value.air $FOAM_CASE/internalFieldValues/value.air;
}
or
active
{
type fixedValue;
value.air :../internalFieldValues/value.air;
}
Currently these deleted function declarations are still in the private section
of the class declarations but will be moved by hand to the public section over
time as this is too complex to automate reliably.
Replaced all uses of complex Xfer class with C++11 "move" constructors and
assignment operators. Removed the now redundant Xfer class.
This substantial changes improves consistency between OpenFOAM and the C++11 STL
containers and algorithms, reduces memory allocation and copy overhead when
returning containers from functions and simplifies maintenance of the core
libraries significantly.
The writeEntry form is now defined and used consistently throughout OpenFOAM
making it easier to use and extend, particularly to support binary IO of complex
dictionary entries.
The radiation modelling library has been moved out of
thermophysicalProperties into the top-level source directory. Radiation
is a process, not a property, and belongs alongside turbulence,
combustion, etc...
The namespaces used within the radiation library have been made
consistent with the rest of the code. Selectable sub-models are in
namespaces named after their base classes. Some models have been
renamed remove the base type from the suffix, as this is unnecessary.
These renames are:
Old name: New name:
binaryAbsorptionEmission binary
cloudAbsorptionEmission cloud
constantAbsorptionEmission constant
greyMeanAbsorptionEmission greyMean/greyMeanCombustion
greyMeanSolidAbsorptionEmission greyMeanSolid
wideBandAbsorptionEmission wideBand/wideBandCombustion
cloudScatter cloud
constantScatter constant
mixtureFractionSoot mixtureFraction
Some absorption-emission models have been split into versions which do
and don't use the heat release rate. The version that does has been
given the post-fix "Combustion" and has been moved into the
combustionModels library. This removes the dependence on a registered
Qdot field, and makes the models compatible with the recent removal of
that field from the combustion solvers.
Registration occurs when the temporary field is transferred to a non-temporary
field via a constructor or if explicitly transferred to the database via the
regIOobject "store" methods.