Commit Graph

14 Commits

Author SHA1 Message Date
a9dc5e1934 thermalBaffleModel: Simplification
Removed unused run-time selection mechanism for the baffle model.
Removed two layers of unnecessary base class (thermalBaffleModel and
regionModel1D). Simplified the handling of thickness and made apply
regarduess of dimensionality. Made thickness data a dimensioned field,
so that mesh changes get applied to it automatically. Replaced ad-hoc
baffle thickness calculation with a "proper" parallel-aware wave-based
method.
2022-08-16 08:57:34 +01:00
ac0eea9610 polyCellSet: General cell set selection class
Description
    General cell set selection class for models that apply to sub-sets
    of the mesh.

    Currently supports cell selection from a set of points, a specified cellSet
    or cellZone or all of the cells.  The selection method can either be
    specified explicitly using the \c selectionMode entry or inferred from the
    presence of either a \c cellSet, \c cellZone or \c points entry.  The \c
    selectionMode entry is required to select \c all cells.

Usage
    Examples:
    \verbatim
        // Apply everywhere
        selectionMode   all;

        // Apply within a given cellSet
        selectionMode   cellSet; // Optional
        cellSet         rotor;

        // Apply within a given cellZone
        selectionMode   cellZone; // Optional
        cellSet         rotor;

        // Apply in cells containing a list of points
        selectionMode   points; // Optional
        points
        (
            (2.25 0.5 0)
            (2.75 0.5 0)
        );
    \endverbatim

Also used as the base-class for fvCellSet which additionally provides and
maintains the volume of the cell set.
2022-08-13 16:32:19 +01:00
7fdde885fe fvCellSet: The selectionMode entry is now optional
Description
    General cell set selection class for models that apply to sub-sets
    of the mesh.

    Currently supports cell selection from a set of points, a specified cellSet
    or cellZone or all of the cells.  The selection method can either be
    specified explicitly using the \c selectionMode entry or inferred from the
    presence of either a \c cellSet, \c cellZone or \c points entry.  The \c
    selectionMode entry is required to select \c all cells.

Usage
    Examples:
    \verbatim
        // Apply everywhere
        selectionMode   all;

        // Apply within a given cellSet
        selectionMode   cellSet; // Optional
        cellSet         rotor;

        // Apply within a given cellZone
        selectionMode   cellZone; // Optional
        cellSet         rotor;

        // Apply in cells containing a list of points
        selectionMode   points; // Optional
        points
        (
            (2.25 0.5 0)
            (2.75 0.5 0)
        );
    \endverbatim

All tutorials updated and simplified.
2022-08-12 18:44:52 +01:00
2da5edec29 Function1s::omega: New user convenience class to handle the input of time-varying rotational speed
Description
    User convenience class to handle the input of time-varying rotational speed
    in rad/s if \c omega is specified or rpm if \c rpm is specified.

Usage
    For specifying the rotational speed in rpm of an MRF zone:
    \verbatim
        MRF
        {
            cellZone    rotor;

            origin     (0 0 0);
            axis       (0 0 1);

            rpm        60;
        }
    \endverbatim
    or the equivalent specified in rad/s:
    \verbatim
        MRF
        {
            cellZone    rotor;

            origin     (0 0 0);
            axis       (0 0 1);

            rpm        6.28319;
        }
    \endverbatim
    or for a tabulated ramped rotational speed of a solid body:
    \verbatim
        mover
        {
            type            motionSolver;

            libs            ("libfvMeshMovers.so" "libfvMotionSolvers.so");

            motionSolver    solidBody;

            cellZone        innerCylinder;

            solidBodyMotionFunction  rotatingMotion;

            origin      (0 0 0);
            axis        (0 1 0);

            rpm         table
            (
                (0    0)
                (0.01  6000)
                (0.022  6000)
                (0.03  4000)
                (100   4000)
            );
        }
    \endverbatim

The following classes have been updated to use the new Function1s::omega class:
    solidBodyMotionFunctions::rotatingMotion
    MRFZone
    rotatingPressureInletOutletVelocityFvPatchVectorField
    rotatingTotalPressureFvPatchScalarField
    rotatingWallVelocityFvPatchVectorField

and all tutorials using these models and BCs updated to use rpm where appropriate.
2022-08-12 16:52:04 +01:00
160ee637f9 MRF: Further developed to replace SRF
MRF (multiple reference frames) can now be used to simulate SRF (single
reference frame) cases by defining the MRF zone to include all the cells is the
mesh and applying appropriate boundary conditions.  The huge advantage of this
is that MRF can easily be added to any solver by the addition of forcing terms
in the momentum equation and absolute velocity to relative flux conversions in
the formulation of the pressure equation rather than having to reformulate the
momentum and pressure system based on the relative velocity as in traditional
SRF.  Also most of the OpenFOAM solver applications and all the solver modules
already support MRF.

To enable this generalisation of MRF the transformations necessary on the
velocity boundary conditions in the MRF zone can no longer be handled by the
MRFZone class itself but special adapted fvPatchFields are required.  Although
this adds to the case setup it provides much greater flexibility and now complex
inlet/outlet conditions can be applied within the MRF zone, necessary for some
SRF case and which was not possible in the original MRF implementation.  Now for
walls rotating within the MRF zone the new 'MRFnoSlip' velocity boundary
conditions must be applied, e.g. in the
tutorials/modules/incompressibleFluid/mixerVessel2DMRF/constant/MRFProperties
case:

boundaryField
{
    rotor
    {
        type            MRFnoSlip;
    }

    stator
    {
        type            noSlip;
    }

    front
    {
        type            empty;
    }

    back
    {
        type            empty;
    }
}

similarly for SRF cases, e.g. in the
tutorials/modules/incompressibleFluid/mixerSRF case:

boundaryField
{
    inlet
    {
        type            fixedValue;
        value           uniform (0 0 -10);
    }

    outlet
    {
        type            pressureInletOutletVelocity;
        value           $internalField;
    }

    rotor
    {
        type            MRFnoSlip;
    }

    outerWall
    {
        type            noSlip;
    }

    cyclic_half0
    {
        type            cyclic;
    }

    cyclic_half1
    {
        type            cyclic;
    }
}

For SRF case all the cells should be selected in the MRFproperties dictionary
which is achieved by simply setting the optional 'selectionMode' entry to all,
e.g.:

SRF
{
    selectionMode   all;

    origin      (0 0 0);
    axis        (0 0 1);

    rpm         1000;
}

In the above the rotational speed is set in RPM rather than rad/s simply by
setting the 'rpm' entry rather than 'omega'.

The tutorials/modules/incompressibleFluid/rotor2DSRF case is more complex and
demonstrates a transient SRF simulation of a rotor requiring the free-stream
velocity to rotate around the apparently stationary rotor which is achieved
using the new 'MRFFreestreamVelocity' velocity boundary condition.  The
equivalent simulation can be achieved by simply rotating the entire mesh and
keeping the free-stream flow stationary and this is demonstrated in the
tutorials/modules/incompressibleFluid/rotor2DRotating case for comparison.

The special SRFSimpleFoam and SRFPimpleFoam solvers are now redundant and have
been replaced by redirection scripts providing details of the case migration
process.
2022-08-11 18:23:15 +01:00
9068d5cc9b tutorials: coolingCylinder2D: Move zone creation into blockMeshDict
This prevents the need for a topoSet configuration. It also avoids a
potential error associated with duplicate specification of the geometry
of the solid region.

Also, the unnecessary ./Allclean has been removed, and some minor
re-naming has been done for clarity.
2022-08-11 09:52:05 +01:00
d3ec1c09f1 tutorials: coolingCylinder2D: Simplified blockMeshDict 2022-08-11 08:40:49 +01:00
ceac941f4c createNonConformalCouples: Support patchType overrides
Field settings can now be specified within
createNonConformalCouplesDict. This allows for patchType overrides; for
example to create a jump condition over the coupling.

An alternate syntax has been added to facilitate this. If patch fields
do not need overriding then the old syntax can be used where patches
that are to be coupled are specified as a pair of names; e.g.:

    fields      yes;

    nonConformalCouples
    {
        fan
        {
            patches         (fan0 fan1);
            transform       none;
        }
    }

If patch fields do need overriding, then instead of the "patches" entry,
separate "owner" and "neighbour" sub-dictionaries should be used. These
can both contain a "patchFields" section detailing the boundary
conditions that apply to the newly created patches:

    fields      yes;

    nonConformalCouples
    {
        fan
        {
            owner
            {
                patch       fan0;

                patchFields
                {
                    p
                    {
                        type        fanPressureJump;
                        patchType   nonConformalCyclic;
                        jump        uniform 0;
                        value       uniform 0;
                        jumpTable   polynomial 1((100 0));
                    }
                }
            }

            neighbour
            {
                patch       fan1;

                patchFields
                {
                    $../../owner/patchFields;
                }
            }

            transform       none;
        }
    }

In this example, only the pressure boundary condition is overridden on
the newly created non-conformal cyclic. All other fields will have the
basic constraint type (i.e., nonConformalCyclic) applied.
2022-08-10 16:26:18 +01:00
b1d6e64d02 createNonConformalCouples: Put non-conformal couple settings in a sub dictionary
Settings for the individual non-conformal couples can now be put in a
"nonConformalCouples" sub-dictionary of the
system/createNonConformalCouplesDict. For example:

    fields  no;

    nonConformalCouples // <-- new sub-dictionary
    {
        nonConformalCouple_none
        {
            patches         (nonCouple1 nonCouple2);
            transform       none;
        }

        nonConformalCouple_30deg
        {
            patches         (nonCoupleBehind nonCoupleAhead);
            transform       rotational;
            rotationAxis    (-1 0 0);
            rotationCentre  (0 0 0);
            rotationAngle   30;
        }
    }

This permits settings to be #include-d from files that themselves
contain sub-dictionaries without the utility treating those
sub-dictionaries as if they specify a non-conformal coupling. It also
makes the syntax more comparable to that of createBafflesDict.

The new "nonConformalCouples" sub-dictionary is optional, so this change
is backwards compatible. The new syntax is recommended, however, and all
examples have been changed accordingly.
2022-08-10 16:25:54 +01:00
bfa40570ad bin/tools/RunFunctions: Added getSolver function for use with foamPostProcess 2022-08-10 09:37:10 +01:00
cd829836eb tutorials/modules/incompressibleFluid/mixerSRF: New tutorial to demonstrate an SRF simulation using MRF 2022-08-09 13:25:09 +01:00
ca89189ecd solvers::incompressibleFluid: New solver module for incompressible fluid flow
executed with foamRun for single region simulations of foamMultiRun for
multi-region simulations.  Replaces pimpleFoam, pisoFoam and simpleFoam and all
the corresponding tutorials have been updated and moved to
tutorials/modules/incompressibleFluid.

Class
    Foam::solvers::incompressibleFluid

Description
    Solver module for steady or transient turbulent flow of incompressible
    isothermal fluids with optional mesh motion and change.

    Uses the flexible PIMPLE (PISO-SIMPLE) solution for time-resolved and
    pseudo-transient and steady simulations.

    Optional fvModels and fvConstraints are provided to enhance the simulation
    in many ways including adding various sources, constraining or limiting
    the solution.

    Reference:
    \verbatim
        Greenshields, C. J., & Weller, H. G. (2022).
        Notes on Computational Fluid Dynamics: General Principles.
        CFD Direct Ltd.: Reading, UK.
    \endverbatim

SourceFiles
    incompressibleFluid.C

See also
    Foam::solvers::fluidSolver
    Foam::solvers::isothermalFluid
2022-08-08 22:46:51 +01:00
792585f9ee foamPostProcess: Update all tutorials and documentation from postProcess to the new foamPostProcess 2022-08-05 12:21:59 +01:00
968e60148a New modular solver framework for single- and multi-region simulations
in which different solver modules can be selected in each region to for complex
conjugate heat-transfer and other combined physics problems such as FSI
(fluid-structure interaction).

For single-region simulations the solver module is selected, instantiated and
executed in the PIMPLE loop in the new foamRun application.

For multi-region simulations the set of solver modules, one for each region, are
selected, instantiated and executed in the multi-region PIMPLE loop of new the
foamMultiRun application.

This provides a very general, flexible and extensible framework for complex
coupled problems by creating more solver modules, either by converting existing
solver applications or creating new ones.

The current set of solver modules provided are:

isothermalFluid
    Solver module for steady or transient turbulent flow of compressible
    isothermal fluids with optional mesh motion and mesh topology changes.

    Created from the rhoSimpleFoam, rhoPimpleFoam and buoyantFoam solvers but
    without the energy equation, hence isothermal.  The buoyant pressure
    formulation corresponding to the buoyantFoam solver is selected
    automatically by the presence of the p_rgh pressure field in the start-time
    directory.

fluid
    Solver module for steady or transient turbulent flow of compressible fluids
    with heat-transfer for HVAC and similar applications, with optional
    mesh motion and mesh topology changes.

    Derived from the isothermalFluid solver module with the addition of the
    energy equation from the rhoSimpleFoam, rhoPimpleFoam and buoyantFoam
    solvers, thus providing the equivalent functionality of these three solvers.

multicomponentFluid
    Solver module for steady or transient turbulent flow of compressible
    reacting fluids with optional mesh motion and mesh topology changes.

    Derived from the isothermalFluid solver module with the addition of
    multicomponent thermophysical properties energy and specie mass-fraction
    equations from the reactingFoam solver, thus providing the equivalent
    functionality in reactingFoam and buoyantReactingFoam.  Chemical reactions
    and/or combustion modelling may be optionally selected to simulate reacting
    systems including fires, explosions etc.

solid
    Solver module for turbulent flow of compressible fluids for conjugate heat
    transfer, HVAC and similar applications, with optional mesh motion and mesh
    topology changes.

    The solid solver module may be selected in solid regions of a CHT case, with
    either the fluid or multicomponentFluid solver module in the fluid regions
    and executed with foamMultiRun to provide functionality equivalent
    chtMultiRegionFoam but in a flexible and extensible framework for future
    extension to more complex coupled problems.

All the usual fvModels, fvConstraints, functionObjects etc. are available with
these solver modules to support simulations including body-forces, local sources,
Lagrangian clouds, liquid films etc. etc.

Converting compressibleInterFoam and multiphaseEulerFoam into solver modules
would provide a significant enhancement to the CHT capability and incompressible
solvers like pimpleFoam run in conjunction with solidDisplacementFoam in
foamMultiRun would be useful for a range of FSI problems.  Many other
combinations of existing solvers converted into solver modules could prove
useful for a very wide range of complex combined physics simulations.

All tutorials from the rhoSimpleFoam, rhoPimpleFoam, buoyantFoam, reactingFoam,
buoyantReactingFoam and chtMultiRegionFoam solver applications replaced by
solver modules have been updated and moved into the tutorials/modules directory:

modules
├── CHT
│   ├── coolingCylinder2D
│   ├── coolingSphere
│   ├── heatedDuct
│   ├── heatExchanger
│   ├── reverseBurner
│   └── shellAndTubeHeatExchanger
├── fluid
│   ├── aerofoilNACA0012
│   ├── aerofoilNACA0012Steady
│   ├── angledDuct
│   ├── angledDuctExplicitFixedCoeff
│   ├── angledDuctLTS
│   ├── annularThermalMixer
│   ├── BernardCells
│   ├── blockedChannel
│   ├── buoyantCavity
│   ├── cavity
│   ├── circuitBoardCooling
│   ├── decompressionTank
│   ├── externalCoupledCavity
│   ├── forwardStep
│   ├── helmholtzResonance
│   ├── hotRadiationRoom
│   ├── hotRadiationRoomFvDOM
│   ├── hotRoom
│   ├── hotRoomBoussinesq
│   ├── hotRoomBoussinesqSteady
│   ├── hotRoomComfort
│   ├── iglooWithFridges
│   ├── mixerVessel2DMRF
│   ├── nacaAirfoil
│   ├── pitzDaily
│   ├── prism
│   ├── shockTube
│   ├── squareBend
│   ├── squareBendLiq
│   └── squareBendLiqSteady
└── multicomponentFluid
    ├── aachenBomb
    ├── counterFlowFlame2D
    ├── counterFlowFlame2D_GRI
    ├── counterFlowFlame2D_GRI_TDAC
    ├── counterFlowFlame2DLTS
    ├── counterFlowFlame2DLTS_GRI_TDAC
    ├── cylinder
    ├── DLR_A_LTS
    ├── filter
    ├── hotBoxes
    ├── membrane
    ├── parcelInBox
    ├── rivuletPanel
    ├── SandiaD_LTS
    ├── simplifiedSiwek
    ├── smallPoolFire2D
    ├── smallPoolFire3D
    ├── splashPanel
    ├── verticalChannel
    ├── verticalChannelLTS
    └── verticalChannelSteady

Also redirection scripts are provided for the replaced solvers which call
foamRun -solver <solver module name> or foamMultiRun in the case of
chtMultiRegionFoam for backward-compatibility.

Documentation for foamRun and foamMultiRun:

Application
    foamRun

Description
    Loads and executes an OpenFOAM solver module either specified by the
    optional \c solver entry in the \c controlDict or as a command-line
    argument.

    Uses the flexible PIMPLE (PISO-SIMPLE) solution for time-resolved and
    pseudo-transient and steady simulations.

Usage
    \b foamRun [OPTION]

      - \par -solver <name>
        Solver name

      - \par -libs '(\"lib1.so\" ... \"libN.so\")'
        Specify the additional libraries loaded

    Example usage:
      - To run a \c rhoPimpleFoam case by specifying the solver on the
        command line:
        \verbatim
            foamRun -solver fluid
        \endverbatim

      - To update and run a \c rhoPimpleFoam case add the following entries to
        the controlDict:
        \verbatim
            application     foamRun;

            solver          fluid;
        \endverbatim
        then execute \c foamRun

Application
    foamMultiRun

Description
    Loads and executes an OpenFOAM solver modules for each region of a
    multiregion simulation e.g. for conjugate heat transfer.

    The region solvers are specified in the \c regionSolvers dictionary entry in
    \c controlDict, containing a list of pairs of region and solver names,
    e.g. for a two region case with one fluid region named
    liquid and one solid region named tubeWall:
    \verbatim
        regionSolvers
        {
            liquid          fluid;
            tubeWall        solid;
        }
    \endverbatim

    The \c regionSolvers entry is a dictionary to support name substitutions to
    simplify the specification of a single solver type for a set of
    regions, e.g.
    \verbatim
        fluidSolver     fluid;
        solidSolver     solid;

        regionSolvers
        {
            tube1             $fluidSolver;
            tubeWall1         solid;
            tube2             $fluidSolver;
            tubeWall2         solid;
            tube3             $fluidSolver;
            tubeWall3         solid;
        }
    \endverbatim

    Uses the flexible PIMPLE (PISO-SIMPLE) solution for time-resolved and
    pseudo-transient and steady simulations.

Usage
    \b foamMultiRun [OPTION]

      - \par -libs '(\"lib1.so\" ... \"libN.so\")'
        Specify the additional libraries loaded

    Example usage:
      - To update and run a \c chtMultiRegion case add the following entries to
        the controlDict:
        \verbatim
            application     foamMultiRun;

            regionSolvers
            {
                fluid           fluid;
                solid           solid;
            }
        \endverbatim
        then execute \c foamMultiRun
2022-08-04 21:11:35 +01:00