Commit Graph

22 Commits

Author SHA1 Message Date
b9fe7df344 polyTopoChange: New library containing the mesh topology change functionality
from the original dynamicMesh library, now separated into polyTopoChange and motionSolvers
2023-12-14 14:08:45 +00:00
0433bd3e00 genericFields: Library reorganisation and reduce duplication 2023-08-25 09:46:40 +01:00
25dd524c84 generic.*Patch: Moved to new genericPatches library
genericPatches is linked into mesh generation and manipulation utilities but not
solvers so that the solvers now check for the availability of the specified
patch types.  Bugs in the tutorials exposed by this check have been corrected.
2023-03-03 09:03:47 +00:00
a3681c3428 DemandDrivenMeshObject: Templated abstract base-class for demand-driven mesh objects
Replaces MeshObject, providing a formalised method for creating demand-driven
mesh objects, optionally supporting update functions called by the mesh
following mesh changes.

Class
    Foam::DemandDrivenMeshObject

Description
    Templated abstract base-class for demand-driven mesh objects used to
    automate their allocation to the mesh database and the mesh-modifier
    event-loop.

    DemandDrivenMeshObject is templated on the type of mesh it is allocated
    to, the type of the mesh object (TopologicalMeshObject, GeometricMeshObject,
    MoveableMeshObject, DistributeableMeshObject, UpdateableMeshObject) and the
    type of the actual object it is created for example:

    \verbatim
    class leastSquaresVectors
    :
        public DemandDrivenMeshObject
        <
            fvMesh,
            MoveableMeshObject,
            leastSquaresVectors
        >
    {
    .
    .
    .
        //- Delete the least square vectors when the mesh moves
        virtual bool movePoints();
    };
    \endverbatim

    MeshObject types:

    - TopologicalMeshObject: mesh object to be deleted on topology change
    - GeometricMeshObject: mesh object to be deleted on geometry change
    - MoveableMeshObject: mesh object to be updated in movePoints
    - UpdateableMeshObject: mesh object to be updated in topoChange or
        movePoints
    - PatchMeshObject: mesh object to be additionally updated patch changes

    DemandDrivenMeshObject should always be constructed and accessed via the New
    methods provided so that they are held and maintained by the objectRegistry.
    To ensure this use constructors of the concrete derived types should be
    private or protected and friendship with the DemandDrivenMeshObject
    base-class declared so that the New functions can call the the constructors.

Additionally the mesh-object types (TopologicalMeshObject, GeometricMeshObject,
MoveableMeshObject, DistributeableMeshObject, UpdateableMeshObject) can now be
used as mix-in types for normally allocated objects providing the same interface
to mesh-change update functions, see the Fickian fluid
thermophysicalTransportModel or anisotropic solid thermophysicalTransportModel.
This new approach to adding mesh-update functions to classes will be applied to
other existing classes and future developments to simplify the support and
maintenance of run-time mesh changes, in particular mesh refinement/unrefinement
and mesh-to-mesh mapping.
2022-12-13 18:29:20 +00:00
b2eff135e6 FaceCellWave: Removed unnecessary intermediate MeshWave class 2022-03-25 12:41:50 +00:00
b9123328fb typeIOobject: Template typed form of IOobject for type-checked object file and header reading
used to check the existence of and open an object file, read and check the
header without constructing the object.

'typeIOobject' operates in an equivalent and consistent manner to 'regIOobject'
but the type information is provided by the template argument rather than via
virtual functions for which the derived object would need to be constructed,
which is the case for 'regIOobject'.

'typeIOobject' replaces the previous separate functions 'typeHeaderOk' and
'typeFilePath' with a single consistent interface.
2021-08-12 10:12:03 +01:00
def4772281 Documentation: Centred the Class Declaration comment
Patch contributed by Institute of Fluid Dynamics,
Helmholtz-Zentrum Dresden - Rossendorf (HZDR)
2020-08-28 13:28:58 +01:00
5eaf74c3a4 dictionary scalar lookup: simplified syntax using the type templated lookup function
Replaced
    readScalar(dict.lookup("name"))
with
    dict.lookup<scalar>("name")
2019-11-27 14:56:32 +00:00
e599162b09 Utilities: standardised the class declaration section comments to correspond to the foamNewSource template 2019-06-19 17:53:10 +01:00
8e9f692aa4 Standardised the class declaration section comments to correspond to the foamNewSource template 2019-06-13 21:26:33 +01:00
fc4d7b92c3 Corrected documentation comment for disabled copy constructors 2019-05-29 15:58:42 +01:00
9140984cf4 Added "= delete" to disabled bitwise copy constructors and assignment operators
Currently these deleted function declarations are still in the private section
of the class declarations but will be moved by hand to the public section over
time as this is too complex to automate reliably.
2019-05-28 15:26:45 +01:00
bf54ab67e1 Updated OpenFOAM Foundation web-link in headers 2018-07-06 21:42:54 +01:00
786318cabd utilities: Centralized annotated utility dictionaries to etc/caseDicts/annotated 2018-06-11 17:20:08 +01:00
fc2b2d0c05 OpenFOAM: Rationalized the naming of scalar limits
In early versions of OpenFOAM the scalar limits were simple macro replacements and the
names were capitalized to indicate this.  The scalar limits are now static
constants which is a huge improvement on the use of macros and for consistency
the names have been changed to camel-case to indicate this and improve
readability of the code:

    GREAT -> great
    ROOTGREAT -> rootGreat
    VGREAT -> vGreat
    ROOTVGREAT -> rootVGreat
    SMALL -> small
    ROOTSMALL -> rootSmall
    VSMALL -> vSmall
    ROOTVSMALL -> rootVSmall

The original capitalized are still currently supported but their use is
deprecated.
2018-01-25 09:46:37 +00:00
7c301dbff4 Parallel IO: New collated file format
When an OpenFOAM simulation runs in parallel, the data for decomposed fields and
mesh(es) has historically been stored in multiple files within separate
directories for each processor.  Processor directories are named 'processorN',
where N is the processor number.

This commit introduces an alternative "collated" file format where the data for
each decomposed field (and mesh) is collated into a single file, which is
written and read on the master processor.  The files are stored in a single
directory named 'processors'.

The new format produces significantly fewer files - one per field, instead of N
per field.  For large parallel cases, this avoids the restriction on the number
of open files imposed by the operating system limits.

The file writing can be threaded allowing the simulation to continue running
while the data is being written to file.  NFS (Network File System) is not
needed when using the the collated format and additionally, there is an option
to run without NFS with the original uncollated approach, known as
"masterUncollated".

The controls for the file handling are in the OptimisationSwitches of
etc/controlDict:

OptimisationSwitches
{
    ...

    //- Parallel IO file handler
    //  uncollated (default), collated or masterUncollated
    fileHandler uncollated;

    //- collated: thread buffer size for queued file writes.
    //  If set to 0 or not sufficient for the file size threading is not used.
    //  Default: 2e9
    maxThreadFileBufferSize 2e9;

    //- masterUncollated: non-blocking buffer size.
    //  If the file exceeds this buffer size scheduled transfer is used.
    //  Default: 2e9
    maxMasterFileBufferSize 2e9;
}

When using the collated file handling, memory is allocated for the data in the
thread.  maxThreadFileBufferSize sets the maximum size of memory in bytes that
is allocated.  If the data exceeds this size, the write does not use threading.

When using the masterUncollated file handling, non-blocking MPI communication
requires a sufficiently large memory buffer on the master node.
maxMasterFileBufferSize sets the maximum size in bytes of the buffer.  If the
data exceeds this size, the system uses scheduled communication.

The installation defaults for the fileHandler choice, maxThreadFileBufferSize
and maxMasterFileBufferSize (set in etc/controlDict) can be over-ridden within
the case controlDict file, like other parameters.  Additionally the fileHandler
can be set by:
- the "-fileHandler" command line argument;
- a FOAM_FILEHANDLER environment variable.

A foamFormatConvert utility allows users to convert files between the collated
and uncollated formats, e.g.
    mpirun -np 2 foamFormatConvert -parallel -fileHandler uncollated

An example case demonstrating the file handling methods is provided in:
$FOAM_TUTORIALS/IO/fileHandling

The work was undertaken by Mattijs Janssens, in collaboration with Henry Weller.
2017-07-07 11:39:56 +01:00
7656c076c8 C++11: Replaced the C NULL with the safer C++11 nullptr
Requires gcc version 4.7 or higher
2016-08-05 17:19:38 +01:00
4500971827 Further standardization of loop index naming: pointI -> pointi, patchI -> patchi 2016-05-18 21:20:42 +01:00
8c4f6b8fcb Standardized cell, patch and face loop index names 2016-04-25 10:28:32 +01:00
10aea96ae5 applications: Update ...ErrorIn -> ...ErrorInFunction
Avoids the clutter and maintenance effort associated with providing the
function signature string.
2015-11-10 17:53:31 +00:00
def52a306a Formatting: Rationalized the indentation of #include 2015-02-10 20:35:50 +00:00
446e5777f0 Add the OpenFOAM source tree 2014-12-10 22:40:10 +00:00