If a "patch" selection is made for a cyclic patch, surfaceFieldValue now
also selects faces on any associated processor cyclic patches. This
ensures that the serial and parallel operations are equivalent.
Many functionObjects operate on fvMesh objects, in particular vol and surface
fields and they cannot be updated in polyMesh as they depend on fvMesh data
which is updated after polyMesh.
If the sequence of meshes are decomposed independently the number, order and
potentially type of processor patches is likely to change. Thus the processor
patches and patch fields must be replaced with those of the new mesh.
A number of changes have been made to the surfaceFieldValue and
volFieldValue function objects to improve their usability and
performance, and to extend them so that similar duplicate functionality
elsewhere in OpenFOAM can be removed.
Weighted operations have been removed. Weighting for averages and sums
is now triggered simply by the existence of the "weightField" or
"weightFields" entry. Multiple weight fields are now supported in both
functions.
The distinction between oriented and non-oriented fields has been
removed from surfaceFieldValue. There is now just a single list of
fields which are operated on. Instead of oriented fields, an
"orientedSum" operation has been added, which should be used for
flowRate calculations and other similar operations on fluxes.
Operations minMag and maxMag have been added to both functions, to
calculate the minimum and maximum field magnitudes respectively. The min
and max operations are performed component-wise, as was the case
previously.
In volFieldValue, minMag and maxMag (and min and mag operations when
applied to scalar fields) will report the location, cell and processor
of the maximum or minimum value. There is also a "writeLocation" option
which if set will write this location information into the output file.
The fieldMinMax function has been made obsolete by this change, and has
therefore been removed.
surfaceFieldValue now operates in parallel without accumulating the
entire surface on the master processor for calculation of the operation.
Collecting the entire surface on the master processor is now only done
if the surface itself is to be written out.
If the surfaceFieldValue function object is used to compute an
area-normal average or integral of a vector quantity, the result will
now be correctly written out as a scalar.
Previously surfaceFieldValue was limited to writing the same type as the
input field. A vector area-normal average or integral therefore had to
be written out as a vector. This was done by setting the x component to
the result, and the y and z components to zero. This was considered to
be counter-intuitive.
A volumetric flow rate through a tri-surface can now be obtained using
the volumetricFlowRateTriSurface preconfigured function object, using
the following entry in system/controlDict:
fuctions
{
#includeFunc "volumetricFlowRateTriSurface(name=surface.stl)"
}
Where "surface.stl" is a tri-surface file in the constant/triSurface
directory. An example of this has been added to the
incompressible/pimpleFoam/RAS/impeller tutorial case.
Note that when possible, it is preferable to use the flowRatePatch or
flowRateFaceZone functions, as these make direct use of the flux and
therefore report a value that is exactly that computed by the solver.
volumetricFlowRateTriSurface, by contrast, does interpolation of the
velocity field which introduces error.
In addition, a minor fix has been made to the underlying
surfaceFieldValue function object so that it does not need a zone/set
name when values on a searchable surface are requested.
e.g. in tutorials/incompressible/pisoFoam/LES/motorBike/motorBike/system/cuttingPlane
surfaceFormat vtk;
writeFormat binary;
fields (p U);
selects writing the VTK surface files in binary format which significantly
speeds-up reading of the files in paraview.
Currently binary writing is supported in VTK and EnSight formats.
In early versions of OpenFOAM the scalar limits were simple macro replacements and the
names were capitalized to indicate this. The scalar limits are now static
constants which is a huge improvement on the use of macros and for consistency
the names have been changed to camel-case to indicate this and improve
readability of the code:
GREAT -> great
ROOTGREAT -> rootGreat
VGREAT -> vGreat
ROOTVGREAT -> rootVGreat
SMALL -> small
ROOTSMALL -> rootSmall
VSMALL -> vSmall
ROOTVSMALL -> rootVSmall
The original capitalized are still currently supported but their use is
deprecated.
"pos" now returns 1 if the argument is greater than 0, otherwise it returns 0.
This is consistent with the common mathematical definition of the "pos" function:
https://en.wikipedia.org/wiki/Sign_(mathematics)
However the previous implementation in which 1 was also returned for a 0
argument is useful in many situations so the "pos0" has been added which returns
1 if the argument is greater or equal to 0. Additionally the "neg0" has been
added which returns 1 if if the argument is less than or equal to 0.