This is a map data structure rather than a class or function which performs the
mapping operation so polyMeshDistributionMap is more logical and comprehensible
than mapDistributePolyMesh.
The lookup been fixed to prevent failures when a field is looked up with
the wrong type, and it now also provides warnings when a field cannot be
found for any type.
With this change each functionObject provides the list of fields required so
that the postProcess utility can pre-load them before executing the list of
functionObjects. This provides a more convenient interface than using the
-field or -fields command-line options to postProcess which are now redundant.
replacing the virtual functions overridden in engineTime.
Now the userTime conversion function in Time is specified in system/controlDict
such that the solver as well as all pre- and post-processing tools also operate
correctly with the chosen user-time.
For example the user-time and rpm in the tutorials/combustion/XiEngineFoam/kivaTest case are
now specified in system/controlDict:
userTime
{
type engine;
rpm 1500;
}
The default specification is real-time:
userTime
{
type real;
}
but this entry can be omitted as the real-time class is instantiated
automatically if the userTime entry is not present in system/controlDict.
Mesh motion and topology change are now combinable run-time selectable options
within fvMesh, replacing the restrictive dynamicFvMesh which supported only
motion OR topology change.
All solvers which instantiated a dynamicFvMesh now instantiate an fvMesh which
reads the optional constant/dynamicFvMeshDict to construct an fvMeshMover and/or
an fvMeshTopoChanger. These two are specified within the optional mover and
topoChanger sub-dictionaries of dynamicFvMeshDict.
When the fvMesh is updated the fvMeshTopoChanger is first executed which can
change the mesh topology in anyway, adding or removing points as required, for
example for automatic mesh refinement/unrefinement, and all registered fields
are mapped onto the updated mesh. The fvMeshMover is then executed which moved
the points only and calculates the cell volume change and corresponding
mesh-fluxes for conservative moving mesh transport. If multiple topological
changes or movements are required these would be combined into special
fvMeshMovers and fvMeshTopoChangers which handle the processing of a list of
changes, e.g. solidBodyMotionFunctions:multiMotion.
The tutorials/multiphase/interFoam/laminar/sloshingTank3D3DoF case has been
updated to demonstrate this new functionality by combining solid-body motion
with mesh refinement/unrefinement:
/*--------------------------------*- C++ -*----------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Version: dev
\\/ M anipulation |
\*---------------------------------------------------------------------------*/
FoamFile
{
format ascii;
class dictionary;
location "constant";
object dynamicMeshDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
mover
{
type motionSolver;
libs ("libfvMeshMovers.so" "libfvMotionSolvers.so");
motionSolver solidBody;
solidBodyMotionFunction SDA;
CofG (0 0 0);
lamda 50;
rollAmax 0.2;
rollAmin 0.1;
heaveA 4;
swayA 2.4;
Q 2;
Tp 14;
Tpn 12;
dTi 0.06;
dTp -0.001;
}
topoChanger
{
type refiner;
libs ("libfvMeshTopoChangers.so");
// How often to refine
refineInterval 1;
// Field to be refinement on
field alpha.water;
// Refine field in between lower..upper
lowerRefineLevel 0.001;
upperRefineLevel 0.999;
// Have slower than 2:1 refinement
nBufferLayers 1;
// Refine cells only up to maxRefinement levels
maxRefinement 1;
// Stop refinement if maxCells reached
maxCells 200000;
// Flux field and corresponding velocity field. Fluxes on changed
// faces get recalculated by interpolating the velocity. Use 'none'
// on surfaceScalarFields that do not need to be reinterpolated.
correctFluxes
(
(phi none)
(nHatf none)
(rhoPhi none)
(alphaPhi.water none)
(meshPhi none)
(meshPhi_0 none)
(ghf none)
);
// Write the refinement level as a volScalarField
dumpLevel true;
}
// ************************************************************************* //
Note that currently this is the only working combination of mesh-motion with
topology change within the new framework and further development is required to
update the set of topology changers so that topology changes with mapping are
separated from the mesh-motion so that they can be combined with any of the
other movements or topology changes in any manner.
All of the solvers and tutorials have been updated to use the new form of
dynamicMeshDict but backward-compatibility was not practical due to the complete
reorganisation of the mesh change structure.
used to check the existence of and open an object file, read and check the
header without constructing the object.
'typeIOobject' operates in an equivalent and consistent manner to 'regIOobject'
but the type information is provided by the template argument rather than via
virtual functions for which the derived object would need to be constructed,
which is the case for 'regIOobject'.
'typeIOobject' replaces the previous separate functions 'typeHeaderOk' and
'typeFilePath' with a single consistent interface.
now all path functions in 'IOobject' are either templated on the type or require a
'globalFile' argument to specify if the type is case global e.g. 'IOdictionary' or
decomposed in parallel, e.g. almost everything else.
The 'global()' and 'globalFile()' virtual functions are now in 'regIOobject'
abstract base-class and overridden as required by derived classes. The path
functions using 'global()' and 'globalFile()' to differentiate between global
and processor local objects are now also in 'regIOobject' rather than 'IOobject'
to ensure the path returned is absolutely consistent with the type.
Unfortunately there is still potential for unexpected IO behaviour inconsistent
with the global/local nature of the type due to the 'fileOperation' classes
searching the processor directory for case global objects before searching the
case directory. This approach appears to be a work-around for incomplete
integration with and rationalisation of 'IOobject' but with the changes above it
is no longer necessary. Unfortunately this "up" searching is baked-in at a low
level and mixed-up with various complex ways to pick the processor directory
name out of the object path and will take some unravelling but this work will
undertaken as time allows.
to provide a single consistent code and user interface to the specification of
physical properties in both single-phase and multi-phase solvers. This redesign
simplifies usage and reduces code duplication in run-time selectable solver
options such as 'functionObjects' and 'fvModels'.
* physicalProperties
Single abstract base-class for all fluid and solid physical property classes.
Physical properties for a single fluid or solid within a region are now read
from the 'constant/<region>/physicalProperties' dictionary.
Physical properties for a phase fluid or solid within a region are now read
from the 'constant/<region>/physicalProperties.<phase>' dictionary.
This replaces the previous inconsistent naming convention of
'transportProperties' for incompressible solvers and
'thermophysicalProperties' for compressible solvers.
Backward-compatibility is provided by the solvers reading
'thermophysicalProperties' or 'transportProperties' if the
'physicalProperties' dictionary does not exist.
* phaseProperties
All multi-phase solvers (VoF and Euler-Euler) now read the list of phases and
interfacial models and coefficients from the
'constant/<region>/phaseProperties' dictionary.
Backward-compatibility is provided by the solvers reading
'thermophysicalProperties' or 'transportProperties' if the 'phaseProperties'
dictionary does not exist. For incompressible VoF solvers the
'transportProperties' is automatically upgraded to 'phaseProperties' and the
two 'physicalProperties.<phase>' dictionary for the phase properties.
* viscosity
Abstract base-class (interface) for all fluids.
Having a single interface for the viscosity of all types of fluids facilitated
a substantial simplification of the 'momentumTransport' library, avoiding the
need for a layer of templating and providing total consistency between
incompressible/compressible and single-phase/multi-phase laminar, RAS and LES
momentum transport models. This allows the generalised Newtonian viscosity
models to be used in the same form within laminar as well as RAS and LES
momentum transport closures in any solver. Strain-rate dependent viscosity
modelling is particularly useful with low-Reynolds number turbulence closures
for non-Newtonian fluids where the effect of bulk shear near the walls on the
viscosity is a dominant effect. Within this framework it would also be
possible to implement generalised Newtonian models dependent on turbulent as
well as mean strain-rate if suitable model formulations are available.
* visosityModel
Run-time selectable Newtonian viscosity model for incompressible fluids
providing the 'viscosity' interface for 'momentumTransport' models.
Currently a 'constant' Newtonian viscosity model is provided but the structure
supports more complex functions of time, space and fields registered to the
region database.
Strain-rate dependent non-Newtonian viscosity models have been removed from
this level and handled in a more general way within the 'momentumTransport'
library, see section 'viscosity' above.
The 'constant' viscosity model is selected in the 'physicalProperties'
dictionary by
viscosityModel constant;
which is equivalent to the previous entry in the 'transportProperties'
dictionary
transportModel Newtonian;
but backward-compatibility is provided for both the keyword and model
type.
* thermophysicalModels
To avoid propagating the unnecessary constructors from 'dictionary' into the
new 'physicalProperties' abstract base-class this entire structure has been
removed from the 'thermophysicalModels' library. The only use for this
constructor was in 'thermalBaffle' which now reads the 'physicalProperties'
dictionary from the baffle region directory which is far simpler and more
consistent and significantly reduces the amount of constructor code in the
'thermophysicalModels' library.
* compressibleInterFoam
The creation of the 'viscosity' interface for the 'momentumTransport' models
allows the complex 'twoPhaseMixtureThermo' derived from 'rhoThermo' to be
replaced with the much simpler 'compressibleTwoPhaseMixture' derived from the
'viscosity' interface, avoiding the myriad of unused thermodynamic functions
required by 'rhoThermo' to be defined for the mixture.
Same for 'compressibleMultiphaseMixture' in 'compressibleMultiphaseInterFoam'.
This is a significant improvement in code and input consistency, simplifying
maintenance and further development as well as enhancing usability.
Henry G. Weller
CFD Direct Ltd.
The new algorithm provides robust quality triangulations of non-convex
polygons. It also produces a best attempt for polygons that are badly
warped or self intersecting by minimising the area in which the local
normal is in the opposite direction to the overal polygon normal. It is
memory efficient when applied to multiple polygons as it maintains and
reuses its workspace.
This algorithm replaces implementations in the face and
faceTriangulation classes, which have been removed.
Faces can no longer be decomposed into mixtures of tris and
quadrilaterals. Polygonal faces with more than 4 sides are now
decomposed into triangles in foamToVTK and in paraFoam.
This improves paraview's handling of VTK files which only contain
points. It means the points are visible without glyph-ing, and provides
the necessary input for some filters to operate correctly.
providing the shear-stress term in the momentum equation for incompressible and
compressible Newtonian, non-Newtonian and visco-elastic laminar flow as well as
Reynolds averaged and large-eddy simulation of turbulent flow.
The general deviatoric shear-stress term provided by the MomentumTransportModels
library is named divDevTau for compressible flow and divDevSigma (sigma =
tau/rho) for incompressible flow, the spherical part of the shear-stress is
assumed to be either included in the pressure or handled separately. The
corresponding stress function sigma is also provided which in the case of
Reynolds stress closure returns the effective Reynolds stress (including the
laminar contribution) or for other Reynolds averaged or large-eddy turbulence
closures returns the modelled Reynolds stress or sub-grid stress respectively.
For visco-elastic flow the sigma function returns the effective total stress
including the visco-elastic and Newtonian contributions.
For thermal flow the heat-flux generated by thermal diffusion is now handled by
the separate ThermophysicalTransportModels library allowing independent run-time
selection of the heat-flux model.
During the development of the MomentumTransportModels library significant effort
has been put into rationalising the components and supporting libraries,
removing redundant code, updating names to provide a more logical, consistent
and extensible interface and aid further development and maintenance. All
solvers and tutorials have been updated correspondingly and backward
compatibility of the input dictionaries provided.
Henry G. Weller
CFD Direct Ltd.
For many information and diagnostic messages the absolute path of the object is
not required and the local path relative to the current case is sufficient; the
new localObjectPath() member function of IOobject provides a convenient way of
printing this.
Currently these deleted function declarations are still in the private section
of the class declarations but will be moved by hand to the public section over
time as this is too complex to automate reliably.
for
db/functionObjects/timeControl/timeControl.H: timeControls
primitives/bools/Switch/Switch.H: class switchType
primitives/strings/fileName/fileName.H: fileType
primitives/strings/wordRe/wordRe.H: compOption
When an OpenFOAM simulation runs in parallel, the data for decomposed fields and
mesh(es) has historically been stored in multiple files within separate
directories for each processor. Processor directories are named 'processorN',
where N is the processor number.
This commit introduces an alternative "collated" file format where the data for
each decomposed field (and mesh) is collated into a single file, which is
written and read on the master processor. The files are stored in a single
directory named 'processors'.
The new format produces significantly fewer files - one per field, instead of N
per field. For large parallel cases, this avoids the restriction on the number
of open files imposed by the operating system limits.
The file writing can be threaded allowing the simulation to continue running
while the data is being written to file. NFS (Network File System) is not
needed when using the the collated format and additionally, there is an option
to run without NFS with the original uncollated approach, known as
"masterUncollated".
The controls for the file handling are in the OptimisationSwitches of
etc/controlDict:
OptimisationSwitches
{
...
//- Parallel IO file handler
// uncollated (default), collated or masterUncollated
fileHandler uncollated;
//- collated: thread buffer size for queued file writes.
// If set to 0 or not sufficient for the file size threading is not used.
// Default: 2e9
maxThreadFileBufferSize 2e9;
//- masterUncollated: non-blocking buffer size.
// If the file exceeds this buffer size scheduled transfer is used.
// Default: 2e9
maxMasterFileBufferSize 2e9;
}
When using the collated file handling, memory is allocated for the data in the
thread. maxThreadFileBufferSize sets the maximum size of memory in bytes that
is allocated. If the data exceeds this size, the write does not use threading.
When using the masterUncollated file handling, non-blocking MPI communication
requires a sufficiently large memory buffer on the master node.
maxMasterFileBufferSize sets the maximum size in bytes of the buffer. If the
data exceeds this size, the system uses scheduled communication.
The installation defaults for the fileHandler choice, maxThreadFileBufferSize
and maxMasterFileBufferSize (set in etc/controlDict) can be over-ridden within
the case controlDict file, like other parameters. Additionally the fileHandler
can be set by:
- the "-fileHandler" command line argument;
- a FOAM_FILEHANDLER environment variable.
A foamFormatConvert utility allows users to convert files between the collated
and uncollated formats, e.g.
mpirun -np 2 foamFormatConvert -parallel -fileHandler uncollated
An example case demonstrating the file handling methods is provided in:
$FOAM_TUTORIALS/IO/fileHandling
The work was undertaken by Mattijs Janssens, in collaboration with Henry Weller.
- There will be triangles rendered inside the mesh (when
surface-rendering), because one of the cell's triangles is defined
as a quadrangle in VTK_WEDGE.
- Therefore, this VTK_WEDGE representation is only used when
decomposing the mesh, otherwise the correct representation is done
by VTK_POLYHEDRON.
- Furthermore, using VTK_PYRAMID gave worse result, because it renders
2 triangles inside the mesh for the collapsed quadrangle, likely due
to mismatch with the adjacent cell's face.
- Using VTK_HEXAHEDRON was not tested in this iteration, given that it
should give even worse results, when compared to using VTK_PYRAMID.
Patch contributed by Bruno Santos
Resolves bug-report http://bugs.openfoam.org/view.php?id=2099