fvMesh::update() now executes at the beginning of the time-step, before time is
incremented and handles topology change, mesh to mesh mapping and redistribution
without point motion. Following each of these mesh changes fields are mapped
from the previous mesh state to new mesh state in a conservative manner. These
mesh changes not occur at most once per time-step.
fvMesh::move() is executed after time is incremented and handles point motion
mesh morphing during the time-step in an Arbitrary Lagrangian Eulerian approach
requiring the mesh motion flux to match the cell volume change. fvMesh::move()
can be called any number of times during the time-step to allow iterative update
of the coupling between the mesh motion and field solution.
with the run-time selectable engine userTime embedded in Time.
All parts of the original engineTime relating to the engine geometry have been
moved to engineMesh. This is part of the process of integrating engine
simulations within the standard moving-mesh solvers.
replacing the virtual functions overridden in engineTime.
Now the userTime conversion function in Time is specified in system/controlDict
such that the solver as well as all pre- and post-processing tools also operate
correctly with the chosen user-time.
For example the user-time and rpm in the tutorials/combustion/XiEngineFoam/kivaTest case are
now specified in system/controlDict:
userTime
{
type engine;
rpm 1500;
}
The default specification is real-time:
userTime
{
type real;
}
but this entry can be omitted as the real-time class is instantiated
automatically if the userTime entry is not present in system/controlDict.