Commit Graph

35 Commits

Author SHA1 Message Date
6ac8680e8c PDRFoamAutoRefine: Removed
The method to update phi in PDRFoamAutoRefine has been superseded by rhoUf in
all other compressible solvers and PDRFoam needs to be updated, requiring
funding.  PDRFoamAutoRefine is no longer maintained.
2023-02-07 14:58:02 +00:00
bbaba1a645 topoSetDict: Corrected/updated formatting
Patch contributed by Institute of Fluid Dynamics, Helmholtz-Zentrum
Dresden - Rossendorf (HZDR)
2022-03-14 13:49:07 +00:00
cf3d6cd1e9 fvMeshMovers, fvMeshTopoChangers: General mesh motion and topology change replacement for dynamicFvMesh
Mesh motion and topology change are now combinable run-time selectable options
within fvMesh, replacing the restrictive dynamicFvMesh which supported only
motion OR topology change.

All solvers which instantiated a dynamicFvMesh now instantiate an fvMesh which
reads the optional constant/dynamicFvMeshDict to construct an fvMeshMover and/or
an fvMeshTopoChanger.  These two are specified within the optional mover and
topoChanger sub-dictionaries of dynamicFvMeshDict.

When the fvMesh is updated the fvMeshTopoChanger is first executed which can
change the mesh topology in anyway, adding or removing points as required, for
example for automatic mesh refinement/unrefinement, and all registered fields
are mapped onto the updated mesh.  The fvMeshMover is then executed which moved
the points only and calculates the cell volume change and corresponding
mesh-fluxes for conservative moving mesh transport.  If multiple topological
changes or movements are required these would be combined into special
fvMeshMovers and fvMeshTopoChangers which handle the processing of a list of
changes, e.g. solidBodyMotionFunctions:multiMotion.

The tutorials/multiphase/interFoam/laminar/sloshingTank3D3DoF case has been
updated to demonstrate this new functionality by combining solid-body motion
with mesh refinement/unrefinement:

/*--------------------------------*- C++ -*----------------------------------*\
  =========                 |
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox
   \\    /   O peration     | Website:  https://openfoam.org
    \\  /    A nd           | Version:  dev
     \\/     M anipulation  |
\*---------------------------------------------------------------------------*/
FoamFile
{
    format      ascii;
    class       dictionary;
    location    "constant";
    object      dynamicMeshDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

mover
{
    type    motionSolver;

    libs    ("libfvMeshMovers.so" "libfvMotionSolvers.so");

    motionSolver    solidBody;

    solidBodyMotionFunction SDA;

    CofG            (0 0 0);
    lamda           50;
    rollAmax        0.2;
    rollAmin        0.1;
    heaveA          4;
    swayA           2.4;
    Q               2;
    Tp              14;
    Tpn             12;
    dTi             0.06;
    dTp             -0.001;
}

topoChanger
{
    type    refiner;

    libs    ("libfvMeshTopoChangers.so");

    // How often to refine
    refineInterval  1;

    // Field to be refinement on
    field           alpha.water;

    // Refine field in between lower..upper
    lowerRefineLevel 0.001;
    upperRefineLevel 0.999;

    // Have slower than 2:1 refinement
    nBufferLayers   1;

    // Refine cells only up to maxRefinement levels
    maxRefinement   1;

    // Stop refinement if maxCells reached
    maxCells        200000;

    // Flux field and corresponding velocity field. Fluxes on changed
    // faces get recalculated by interpolating the velocity. Use 'none'
    // on surfaceScalarFields that do not need to be reinterpolated.
    correctFluxes
    (
        (phi none)
        (nHatf none)
        (rhoPhi none)
        (alphaPhi.water none)
        (meshPhi none)
        (meshPhi_0 none)
        (ghf none)
    );

    // Write the refinement level as a volScalarField
    dumpLevel       true;
}

// ************************************************************************* //

Note that currently this is the only working combination of mesh-motion with
topology change within the new framework and further development is required to
update the set of topology changers so that topology changes with mapping are
separated from the mesh-motion so that they can be combined with any of the
other movements or topology changes in any manner.

All of the solvers and tutorials have been updated to use the new form of
dynamicMeshDict but backward-compatibility was not practical due to the complete
reorganisation of the mesh change structure.
2021-10-01 15:50:06 +01:00
65ef2cf331 physicalProperties: Standardised incompressible and compressible solver fluid properties
to provide a single consistent code and user interface to the specification of
physical properties in both single-phase and multi-phase solvers.  This redesign
simplifies usage and reduces code duplication in run-time selectable solver
options such as 'functionObjects' and 'fvModels'.

* physicalProperties
  Single abstract base-class for all fluid and solid physical property classes.

  Physical properties for a single fluid or solid within a region are now read
  from the 'constant/<region>/physicalProperties' dictionary.

  Physical properties for a phase fluid or solid within a region are now read
  from the 'constant/<region>/physicalProperties.<phase>' dictionary.

  This replaces the previous inconsistent naming convention of
  'transportProperties' for incompressible solvers and
  'thermophysicalProperties' for compressible solvers.

  Backward-compatibility is provided by the solvers reading
  'thermophysicalProperties' or 'transportProperties' if the
  'physicalProperties' dictionary does not exist.

* phaseProperties
  All multi-phase solvers (VoF and Euler-Euler) now read the list of phases and
  interfacial models and coefficients from the
  'constant/<region>/phaseProperties' dictionary.

  Backward-compatibility is provided by the solvers reading
  'thermophysicalProperties' or 'transportProperties' if the 'phaseProperties'
  dictionary does not exist.  For incompressible VoF solvers the
  'transportProperties' is automatically upgraded to 'phaseProperties' and the
  two 'physicalProperties.<phase>' dictionary for the phase properties.

* viscosity
  Abstract base-class (interface) for all fluids.

  Having a single interface for the viscosity of all types of fluids facilitated
  a substantial simplification of the 'momentumTransport' library, avoiding the
  need for a layer of templating and providing total consistency between
  incompressible/compressible and single-phase/multi-phase laminar, RAS and LES
  momentum transport models.  This allows the generalised Newtonian viscosity
  models to be used in the same form within laminar as well as RAS and LES
  momentum transport closures in any solver.  Strain-rate dependent viscosity
  modelling is particularly useful with low-Reynolds number turbulence closures
  for non-Newtonian fluids where the effect of bulk shear near the walls on the
  viscosity is a dominant effect.  Within this framework it would also be
  possible to implement generalised Newtonian models dependent on turbulent as
  well as mean strain-rate if suitable model formulations are available.

* visosityModel
  Run-time selectable Newtonian viscosity model for incompressible fluids
  providing the 'viscosity' interface for 'momentumTransport' models.

  Currently a 'constant' Newtonian viscosity model is provided but the structure
  supports more complex functions of time, space and fields registered to the
  region database.

  Strain-rate dependent non-Newtonian viscosity models have been removed from
  this level and handled in a more general way within the 'momentumTransport'
  library, see section 'viscosity' above.

  The 'constant' viscosity model is selected in the 'physicalProperties'
  dictionary by

      viscosityModel  constant;

  which is equivalent to the previous entry in the 'transportProperties'
  dictionary

      transportModel  Newtonian;

  but backward-compatibility is provided for both the keyword and model
  type.

* thermophysicalModels
  To avoid propagating the unnecessary constructors from 'dictionary' into the
  new 'physicalProperties' abstract base-class this entire structure has been
  removed from the 'thermophysicalModels' library.  The only use for this
  constructor was in 'thermalBaffle' which now reads the 'physicalProperties'
  dictionary from the baffle region directory which is far simpler and more
  consistent and significantly reduces the amount of constructor code in the
  'thermophysicalModels' library.

* compressibleInterFoam
  The creation of the 'viscosity' interface for the 'momentumTransport' models
  allows the complex 'twoPhaseMixtureThermo' derived from 'rhoThermo' to be
  replaced with the much simpler 'compressibleTwoPhaseMixture' derived from the
  'viscosity' interface, avoiding the myriad of unused thermodynamic functions
  required by 'rhoThermo' to be defined for the mixture.

  Same for 'compressibleMultiphaseMixture' in 'compressibleMultiphaseInterFoam'.

This is a significant improvement in code and input consistency, simplifying
maintenance and further development as well as enhancing usability.

Henry G. Weller
CFD Direct Ltd.
2021-07-30 17:19:54 +01:00
15a27fee87 topoSet: the sourceInfo sub-dictionary of the topoSetDict actions is now optional
and only needed if there is a name clash between entries in the source
specification and the set specification, e.g. "name":

    {
        name    rotorCells;
        type    cellSet;
        action  new;
        source  zoneToCell;
        sourceInfo
        {
            name    cylinder;
        }
    }
2021-07-27 14:07:37 +01:00
9c73d4d206 decomposeParDict: The 'delta' entry for geometric decomposition is no option and defaults to 0.001
When using 'simple' or 'hierarchical' decomposition it is useful to slightly rotate a
coordinate-aligned block-mesh to improve the processor boundaries by avoiding
irregular cell distribution at those boundaries.  The degree of slight rotation
is controlled by the 'delta' coefficient and a value of 0.001 is generally
suitable so to avoid unnecessary clutter in 'decomposeParDict' 'delta' now
defaults to this value.
2021-06-24 10:18:20 +01:00
01494463d0 FoamFile: 'version' entry is now optional, defaulting to 2.0
The FOAM file format has not changed from version 2.0 in many years and so there
is no longer a need for the 'version' entry in the FoamFile header to be
required and to reduce unnecessary clutter it is now optional, defaulting to the
current file format 2.0.
2021-06-23 20:50:10 +01:00
7f5144312e Renamed turbulenceProperties -> momentumTransport
Following the generalisation of the TurbulenceModels library to support
non-Newtonian laminar flow including visco-elasticity and extensible to other
form of non-Newtonian behaviour the name TurbulenceModels is misleading and does
not properly represent how general the OpenFOAM solvers now are.  The
TurbulenceModels now provides an interface to momentum transport modelling in
general and the plan is to rename it MomentumTransportModels and in preparation
for this the turbulenceProperties dictionary has been renamed momentumTransport
to properly reflect its new more general purpose.

The old turbulenceProperties name is supported for backward-compatibility.
2020-04-10 17:17:37 +01:00
b7b678bceb tutorials: Updated the momentum transport model type selection
renaming the legacy keywords
    RASModel -> model
    LESModel -> model
    laminarModel -> model

which is simpler and clear within the context in which they are specified, e.g.

RAS
{
    model               kOmegaSST;
    turbulence          on;
    printCoeffs         on;
}

rather than

RAS
{
    RASModel            kOmegaSST;
    turbulence          on;
    printCoeffs         on;
}

The old keywords are supported for backward compatibility.
2020-04-07 13:11:50 +01:00
87bce82854 coupledPolyPatch: Rewrite transformations and ordering
The calculation and input/output of transformations has been rewritten
for all coupled patches. This replaces multiple duplicated, inconsistent
and incomplete implementations of transformation handling which were
spread across the different coupled patch types.

Transformations are now calculated or specified once, typically during
mesh construction or manipulation, and are written out with the boundary
data. They are never re-calculated. Mesh changes should not change the
transformation across a coupled interface; to do so would violate the
transformation.

Transformations are now calculated using integral properties of the
patches. This is more numerically stable that the previous methods which
functioned in terms of individual faces. The new routines are also able
to automatically calculate non-zero centres of rotation.

The user input of transformations is backwards compatible, and permits
the user to manually specify varying amounts of the transformation
geometry. Anything left unspecified gets automatically computed from the
patch geometry. Supported specifications are:

    1) No specification. Transformations on cyclics are automatically
    generated, and cyclicAMI-type patches assume no transformation. For
    example (in system/blockMeshDict):

        cyclicLeft
        {
            type                cyclic;
            neighbourPatch      cyclicRight;
            faces               ((0 1 2 3));
        }

        cyclicRight
        {
            type                cyclic;
            neighbourPatch      cyclicLeft;
            faces               ((4 5 6 7));
        }

    2) Partial specification. The type of transformation is specified
    by the user, as well as the coordinate system if the transform is
    rotational. The rotation angle or separation vector is still
    automatically generated. This form is useful as the signs of the
    angle and separation are opposite on different sides of an interface
    and can be difficult to specify correctly. For example:

        cyclicLeft
        {
            type                cyclic;
            neighbourPatch      cyclicRight;
            transformType       translational;
            faces               ((0 1 2 3));
        }

        cyclicRight
        {
            type                cyclic;
            neighbourPatch      cyclicLeft;
            transformType       translational;
            faces               ((4 5 6 7));
        }

        cyclicAMILeft
        {
            type                cyclicAMI;
            neighbourPatch      cyclicAMIRight;
            transformType       rotational;
            rotationAxis        (0 0 1);
            rotationCentre      (0.05 -0.01 0);
            faces               ((8 9 10 11));
        }

        cyclicAMIRight
        {
            type                cyclicAMI;
            neighbourPatch      cyclicAMILeft;
            transformType       rotational;
            rotationAxis        (0 0 1);
            rotationCentre      (0.05 -0.01 0);
            faces               ((12 13 14 15));
        }

    3) Full specification. All parameters of the transformation are
    given. For example:

        cyclicLeft
        {
            type                cyclic;
            neighbourPatch      cyclicRight;
            transformType       translational;
            separaion           (-0.01 0 0);
            faces               ((0 1 2 3));
        }

        cyclicRight
        {
            type                cyclic;
            neighbourPatch      cyclicLeft;
            transformType       translational;
            separaion           (0.01 0 0);
            faces               ((4 5 6 7));
        }

        cyclicAMILeft
        {
            type                cyclicAMI;
            neighbourPatch      cyclicAMIRight;
            transformType       rotational;
            rotationAxis        (0 0 1);
            rotationCentre      (0.05 -0.01 0);
            rotationAngle       60;
            faces               ((8 9 10 11));
        }

        cyclicAMIRight
        {
            type                cyclicAMI;
            neighbourPatch      cyclicAMILeft;
            transformType       rotational;
            rotationAxis        (0 0 1);
            rotationCentre      (0.05 -0.01 0);
            rotationAngle       60;
            faces               ((12 13 14 15));
        }

Automatic ordering of faces and points across coupled patches has also
been rewritten, again replacing multiple unsatisfactory implementations.

The new ordering method is more robust on poor meshes as it
geometrically matches only a single face (per contiguous region of the
patch) in order to perform the ordering, and this face is chosen to be
the one with the highest quality. A failure in ordering now only occurs
if the best face in the patch cannot be geometrically matched, whether
as previously the worst face could cause the algorithm to fail.

The oldCyclicPolyPatch has been removed, and the mesh converters which
previously used it now all generate ordered cyclic and baffle patches
directly. This removes the need to run foamUpgradeCyclics after
conversion. In addition the fluent3DMeshToFoam converter now supports
conversion of periodic/shadow pairs to OpenFOAM cyclic patches.
2020-01-22 11:45:18 +00:00
c5db440298 dynamicMeshDict: standardised indentation 2019-01-23 11:45:23 +00:00
fdbf3c134f Rationalized dictionary and configuration file headers 2018-07-09 15:40:05 +01:00
bf54ab67e1 Updated OpenFOAM Foundation web-link in headers 2018-07-06 21:42:54 +01:00
d9689398f1 tutorials/lagrangian/reactingParcelFoam/hotBoxes: Avoided unnecessary use of changeDictionary 2018-05-31 18:38:36 +01:00
1e633784f8 tutorials/combustion/PDRFoam/flamePropagationWithObstacles: Added new 0 directory 2018-05-31 16:50:04 +01:00
877f4cfa49 tutorials/combustion/PDRFoam/flamePropagationWithObstacles: Simplified avoiding changeDictionary 2018-05-31 16:48:56 +01:00
bf52a98e09 tutorials::Allrun: getApplication -> $(getApplication) 2018-05-28 22:20:07 +01:00
9801c25788 The "<type>Coeffs" sub-dictionary is now optional for most model parameters
except turbulence and lagrangian which will also be updated shortly.

For example in the nonNewtonianIcoFoam offsetCylinder tutorial the viscosity
model coefficients may be specified in the corresponding "<type>Coeffs"
sub-dictionary:

transportModel  CrossPowerLaw;

CrossPowerLawCoeffs
{
    nu0         [0 2 -1 0 0 0 0]  0.01;
    nuInf       [0 2 -1 0 0 0 0]  10;
    m           [0 0 1 0 0 0 0]   0.4;
    n           [0 0 0 0 0 0 0]   3;
}

BirdCarreauCoeffs
{
    nu0         [0 2 -1 0 0 0 0]  1e-06;
    nuInf       [0 2 -1 0 0 0 0]  1e-06;
    k           [0 0 1 0 0 0 0]   0;
    n           [0 0 0 0 0 0 0]   1;
}

which allows a quick change between models, or using the simpler

transportModel  CrossPowerLaw;

nu0         [0 2 -1 0 0 0 0]  0.01;
nuInf       [0 2 -1 0 0 0 0]  10;
m           [0 0 1 0 0 0 0]   0.4;
n           [0 0 0 0 0 0 0]   3;

if quick switching between models is not required.

To support this more convenient parameter specification the inconsistent
specification of seedSampleSet in the streamLine and wallBoundedStreamLine
functionObjects had to be corrected from

    // Seeding method.
    seedSampleSet   uniform;  //cloud; //triSurfaceMeshPointSet;

    uniformCoeffs
    {
        type        uniform;
        axis        x;  //distance;

        // Note: tracks slightly offset so as not to be on a face
        start       (-1.001 -0.05 0.0011);
        end         (-1.001 -0.05 1.0011);
        nPoints     20;
    }

to the simpler

    // Seeding method.
    seedSampleSet
    {
        type        uniform;
        axis        x;  //distance;

        // Note: tracks slightly offset so as not to be on a face
        start       (-1.001 -0.05 0.0011);
        end         (-1.001 -0.05 1.0011);
        nPoints     20;
    }

which also support the "<type>Coeffs" form

    // Seeding method.
    seedSampleSet
    {
        type        uniform;

        uniformCoeffs
        {
            axis        x;  //distance;

            // Note: tracks slightly offset so as not to be on a face
            start       (-1.001 -0.05 0.0011);
            end         (-1.001 -0.05 1.0011);
            nPoints     20;
        }
    }
2017-04-20 09:14:48 +01:00
abc50e214c thermophysicalModels: Changed specie thermodynamics from mole to mass basis
The fundamental properties provided by the specie class hierarchy were
mole-based, i.e. provide the properties per mole whereas the fundamental
properties provided by the liquidProperties and solidProperties classes are
mass-based, i.e. per unit mass.  This inconsistency made it impossible to
instantiate the thermodynamics packages (rhoThermo, psiThermo) used by the FV
transport solvers on liquidProperties.  In order to combine VoF with film and/or
Lagrangian models it is essential that the physical propertied of the three
representations of the liquid are consistent which means that it is necessary to
instantiate the thermodynamics packages on liquidProperties.  This requires
either liquidProperties to be rewritten mole-based or the specie classes to be
rewritten mass-based.  Given that most of OpenFOAM solvers operate
mass-based (solve for mass-fractions and provide mass-fractions to sub-models it
is more consistent and efficient if the low-level thermodynamics is also
mass-based.

This commit includes all of the changes necessary for all of the thermodynamics
in OpenFOAM to operate mass-based and supports the instantiation of
thermodynamics packages on liquidProperties.

Note that most users, developers and contributors to OpenFOAM will not notice
any difference in the operation of the code except that the confusing

    nMoles     1;

entries in the thermophysicalProperties files are no longer needed or used and
have been removed in this commet.  The only substantial change to the internals
is that species thermodynamics are now "mixed" with mass rather than mole
fractions.  This is more convenient except for defining reaction equilibrium
thermodynamics for which the molar rather than mass composition is usually know.
The consequence of this can be seen in the adiabaticFlameT, equilibriumCO and
equilibriumFlameT utilities in which the species thermodynamics are
pre-multiplied by their molecular mass to effectively convert them to mole-basis
to simplify the definition of the reaction equilibrium thermodynamics, e.g. in
equilibriumCO

    // Reactants (mole-based)
    thermo FUEL(thermoData.subDict(fuelName)); FUEL *= FUEL.W();

    // Oxidant (mole-based)
    thermo O2(thermoData.subDict("O2")); O2 *= O2.W();
    thermo N2(thermoData.subDict("N2")); N2 *= N2.W();

    // Intermediates (mole-based)
    thermo H2(thermoData.subDict("H2")); H2 *= H2.W();

    // Products (mole-based)
    thermo CO2(thermoData.subDict("CO2")); CO2 *= CO2.W();
    thermo H2O(thermoData.subDict("H2O")); H2O *= H2O.W();
    thermo CO(thermoData.subDict("CO")); CO *= CO.W();

    // Product dissociation reactions

    thermo CO2BreakUp
    (
        CO2 == CO + 0.5*O2
    );

    thermo H2OBreakUp
    (
        H2O == H2 + 0.5*O2
    );

Please report any problems with this substantial but necessary rewrite of the
thermodynamic at https://bugs.openfoam.org

Henry G. Weller
CFD Direct Ltd.
2017-02-17 11:22:14 +00:00
c339d3018c PBiCGStab: New preconditioned bi-conjugate gradient stabilized solver for asymmetric lduMatrices
using a run-time selectable preconditioner

References:
    Van der Vorst, H. A. (1992).
    Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG
    for the solution of nonsymmetric linear systems.
    SIAM Journal on scientific and Statistical Computing, 13(2), 631-644.

    Barrett, R., Berry, M. W., Chan, T. F., Demmel, J., Donato, J.,
    Dongarra, J., Eijkhout, V., Pozo, R., Romine, C. & Van der Vorst, H.
    (1994).
    Templates for the solution of linear systems:
    building blocks for iterative methods
    (Vol. 43). Siam.

See also: https://en.wikipedia.org/wiki/Biconjugate_gradient_stabilized_method

Tests have shown that PBiCGStab with the DILU preconditioner is more
robust, reliable and shows faster convergence (~2x) than PBiCG with
DILU, in particular in parallel where PBiCG occasionally diverges.

This remarkable improvement over PBiCG prompted the update of all
tutorial cases currently using PBiCG to use PBiCGStab instead.  If any
issues arise with this update please report on Mantis: http://bugs.openfoam.org
2016-09-05 11:46:42 +01:00
aef116bd60 Updated headers 2016-08-24 08:57:44 +01:00
685afaafbf changeDictionary: Simplified by removing the need for the superfluous dictionaryReplacement sub-dictionary
Added the option '-subDict' to specify a sub-dictionary if multiple
replacement sets are present in the same file.  This also provides
backward compatibility by setting '-subDict dictionaryReplacement'
2016-06-15 09:03:05 +01:00
a1cc51b116 Tutorials fvSolution files: removed solver entries which use default
values; formatted Switch entries consistently across all cases
2016-06-15 07:39:37 +01:00
324638ca9b Tutorials: made laplacianSchemes consistent and correct 2016-06-13 23:38:03 +01:00
e22c65dd8e Standardized the selection of required and optional fields in BCs, fvOptions, functionObjects etc.
In most boundary conditions, fvOptions etc. required and optional fields
to be looked-up from the objectRegistry are selected by setting the
keyword corresponding to the standard field name in the BC etc. to the
appropriate name in the objectRegistry.  Usually a default is provided
with sets the field name to the keyword name, e.g. in the
totalPressureFvPatchScalarField the velocity is selected by setting the
keyword 'U' to the appropriate name which defaults to 'U':

        Property     | Description             | Required    | Default value
        U            | velocity field name     | no          | U
        phi          | flux field name         | no          | phi
        .
        .
        .

However, in some BCs and functionObjects and many fvOptions another
convention is used in which the field name keyword is appended by 'Name'
e.g.

        Property     | Description             | Required    | Default value
        pName        | pressure field name     | no          | p
        UName        | velocity field name     | no          | U

This difference in convention is unnecessary and confusing, hinders code
and dictionary reuse and complicates code maintenance.  In this commit
the appended 'Name' is removed from the field selection keywords
standardizing OpenFOAM on the first convention above.
2016-05-21 20:28:20 +01:00
8cdd590333 tutorials: Renamed .org -> .orig
See http://www.openfoam.org/mantisbt/view.php?id=2076
  - .org is the file extension for emacs org-mode as well
  - .orig is more to the point (.org isn't always recognized as "original")
  - .original is too long, although more consistent with the convention
    of source code file naming

Update script contributed by Bruno Santos
2016-04-30 21:53:50 +01:00
fa0656c358 scripts: Reformat with consistent section separators 2016-02-15 18:30:24 +00:00
28006ee0a5 tutorials and templates: Updated wall BC for velocity to noSlip 2016-02-09 20:08:34 +00:00
2b1ee6b497 tutorials: Removed unnecessary spaces between parentheses and values in vectors 2015-07-21 20:55:44 +01:00
ecee2d275e Input of dimensionedScalars: update read-construction of dimensionedScalar in applications
so that the specification of the name and dimensions are optional in property dictionaries.

Update tutorials so that the name of the dimensionedScalar property is
no longer duplicated but optional dimensions are still provided and are
checked on read.
2015-07-20 22:52:53 +01:00
dc0523643f fluxRequired: Added setFluxRequired function to fvSchemes class
Added calls to setFluxRequired for p, p_rgh etc. in all solvers which
avoids the need to add fluxRequired entries in fvSchemes dictionaries.
2015-07-15 21:57:16 +01:00
3a3c29b284 blockMesh: Change default location of blockMeshDict from constant/polyMesh to system
For multi-region cases the default location of blockMeshDict is now system/<region name>

If the blockMeshDict is not found in system then the constant directory
is also checked providing backward-compatibility
2015-04-24 22:29:57 +01:00
93732c8af4 Updated the whole of OpenFOAM to use the new templated TurbulenceModels library
The old separate incompressible and compressible libraries have been removed.

Most of the commonly used RANS and LES models have been upgraded to the
new framework but there are a few missing which will be added over the
next few days, in particular the realizable k-epsilon model.  Some of
the less common incompressible RANS models have been introduced into the
new library instantiated for incompressible flow only.  If they prove to
be generally useful they can be templated for compressible and
multiphase application.

The Spalart-Allmaras DDES and IDDES models have been thoroughly
debugged, removing serious errors concerning the use of S rather than
Omega.

The compressible instances of the models have been augmented by a simple
backward-compatible eddyDiffusivity model for thermal transport based on
alphat and alphaEff.  This will be replaced with a separate run-time
selectable thermal transport model framework in a few weeks.

For simplicity and ease of maintenance and further development the
turbulent transport and wall modeling is based on nut/nuEff rather than
mut/muEff for compressible models so that all forms of turbulence models
can use the same wall-functions and other BCs.

All turbulence model selection made in the constant/turbulenceProperties
dictionary with RAS and LES as sub-dictionaries rather than in separate
files which added huge complexity for multiphase.

All tutorials have been updated so study the changes and update your own
cases by comparison with similar cases provided.

Sorry for the inconvenience in the break in backward-compatibility but
this update to the turbulence modeling is an essential step in the
future of OpenFOAM to allow more models to be added and maintained for a
wider range of cases and physics.  Over the next weeks and months more
turbulence models will be added of single and multiphase flow, more
additional sub-models and further development and testing of existing
models.  I hope this brings benefits to all OpenFOAM users.

Henry G. Weller
2015-01-21 19:21:39 +00:00
195c566562 Minor change to comment 2014-12-14 21:50:14 +00:00
446e5777f0 Add the OpenFOAM source tree 2014-12-10 22:40:10 +00:00