Commit Graph

24 Commits

Author SHA1 Message Date
3efe097c69 Standardised naming of multicomponent thermophysical properties: multiComponent -> multicomponent
Full backward-compatibility is provided which support for both multiComponentMixture and
multiComponentPhaseModel provided but all tutorials have been updated.
2022-07-29 17:28:07 +01:00
65ef2cf331 physicalProperties: Standardised incompressible and compressible solver fluid properties
to provide a single consistent code and user interface to the specification of
physical properties in both single-phase and multi-phase solvers.  This redesign
simplifies usage and reduces code duplication in run-time selectable solver
options such as 'functionObjects' and 'fvModels'.

* physicalProperties
  Single abstract base-class for all fluid and solid physical property classes.

  Physical properties for a single fluid or solid within a region are now read
  from the 'constant/<region>/physicalProperties' dictionary.

  Physical properties for a phase fluid or solid within a region are now read
  from the 'constant/<region>/physicalProperties.<phase>' dictionary.

  This replaces the previous inconsistent naming convention of
  'transportProperties' for incompressible solvers and
  'thermophysicalProperties' for compressible solvers.

  Backward-compatibility is provided by the solvers reading
  'thermophysicalProperties' or 'transportProperties' if the
  'physicalProperties' dictionary does not exist.

* phaseProperties
  All multi-phase solvers (VoF and Euler-Euler) now read the list of phases and
  interfacial models and coefficients from the
  'constant/<region>/phaseProperties' dictionary.

  Backward-compatibility is provided by the solvers reading
  'thermophysicalProperties' or 'transportProperties' if the 'phaseProperties'
  dictionary does not exist.  For incompressible VoF solvers the
  'transportProperties' is automatically upgraded to 'phaseProperties' and the
  two 'physicalProperties.<phase>' dictionary for the phase properties.

* viscosity
  Abstract base-class (interface) for all fluids.

  Having a single interface for the viscosity of all types of fluids facilitated
  a substantial simplification of the 'momentumTransport' library, avoiding the
  need for a layer of templating and providing total consistency between
  incompressible/compressible and single-phase/multi-phase laminar, RAS and LES
  momentum transport models.  This allows the generalised Newtonian viscosity
  models to be used in the same form within laminar as well as RAS and LES
  momentum transport closures in any solver.  Strain-rate dependent viscosity
  modelling is particularly useful with low-Reynolds number turbulence closures
  for non-Newtonian fluids where the effect of bulk shear near the walls on the
  viscosity is a dominant effect.  Within this framework it would also be
  possible to implement generalised Newtonian models dependent on turbulent as
  well as mean strain-rate if suitable model formulations are available.

* visosityModel
  Run-time selectable Newtonian viscosity model for incompressible fluids
  providing the 'viscosity' interface for 'momentumTransport' models.

  Currently a 'constant' Newtonian viscosity model is provided but the structure
  supports more complex functions of time, space and fields registered to the
  region database.

  Strain-rate dependent non-Newtonian viscosity models have been removed from
  this level and handled in a more general way within the 'momentumTransport'
  library, see section 'viscosity' above.

  The 'constant' viscosity model is selected in the 'physicalProperties'
  dictionary by

      viscosityModel  constant;

  which is equivalent to the previous entry in the 'transportProperties'
  dictionary

      transportModel  Newtonian;

  but backward-compatibility is provided for both the keyword and model
  type.

* thermophysicalModels
  To avoid propagating the unnecessary constructors from 'dictionary' into the
  new 'physicalProperties' abstract base-class this entire structure has been
  removed from the 'thermophysicalModels' library.  The only use for this
  constructor was in 'thermalBaffle' which now reads the 'physicalProperties'
  dictionary from the baffle region directory which is far simpler and more
  consistent and significantly reduces the amount of constructor code in the
  'thermophysicalModels' library.

* compressibleInterFoam
  The creation of the 'viscosity' interface for the 'momentumTransport' models
  allows the complex 'twoPhaseMixtureThermo' derived from 'rhoThermo' to be
  replaced with the much simpler 'compressibleTwoPhaseMixture' derived from the
  'viscosity' interface, avoiding the myriad of unused thermodynamic functions
  required by 'rhoThermo' to be defined for the mixture.

  Same for 'compressibleMultiphaseMixture' in 'compressibleMultiphaseInterFoam'.

This is a significant improvement in code and input consistency, simplifying
maintenance and further development as well as enhancing usability.

Henry G. Weller
CFD Direct Ltd.
2021-07-30 17:19:54 +01:00
01494463d0 FoamFile: 'version' entry is now optional, defaulting to 2.0
The FOAM file format has not changed from version 2.0 in many years and so there
is no longer a need for the 'version' entry in the FoamFile header to be
required and to reduce unnecessary clutter it is now optional, defaulting to the
current file format 2.0.
2021-06-23 20:50:10 +01:00
095054d82e applications/solvers/combustion: Moved the inertSpecie functionality into basicSpecieMixture
and renamed defaultSpecie as its mass fraction is derived from the sum of the
mass fractions of all other species and it need not be inert but must be present
everywhere, e.g. N2 in air/fuel combustion which can be involved in the
production of NOx.

The previous name inertSpecie in thermophysicalProperties is supported for
backward compatibility.
2020-10-26 20:57:01 +00:00
bddd829fc2 chemistrySolver::EulerImplicit: Updated to use the StandardChemistryModel reaction Jacobian 2020-07-29 19:09:40 +01:00
05208f64dc StandardChemistryModel: Separate the reaction system from the mixture thermodynamics
This allows much greater flexibility in the instantiation of reaction system
which may in general depend on fields other than the thermodynamic state.  This
also simplifies mixture thermodynamics removing the need for the reactingMixture
and the instantiation of all the thermodynamic package combinations depending on
it.
2019-08-03 15:11:00 +01:00
5acfe8b20a reactingMixture: Rationalised the reading of the species thermo and reactions
which are now read directly from the thermophysicalProperties dictionary for
consistency with non-reacting mixture thermodynamics.  The species thermo and
reactions lists can still be in separate files if convenient and included into
the thermophysicalProperties file using the standard dictionary #include.
2019-08-02 22:47:45 +01:00
4baf73b54d reactingMixture: use the foamChemistryReader directly rather than chemistryReader::New
This formalises the flexible and extensible OpenFOAM thermodynamics and reaction
format as the direct input to OpenFOAM solvers.  The CHEMKIN format is still
supported by first converting to the OpenFOAM format using the chemkinToFoam
utility.
2019-08-02 14:47:37 +01:00
ee443e201f Rationalised the handling of "Final" solver and relaxation factor settings
Now for transient simulations "Final" solver settings are required for ALL
equations providing consistency between the solution of velocity, energy,
composition and radiation properties.

However "Final" relaxation factors are no longer required for fields or
equations and if not present the standard value for the variable will be
applied.  Given that relaxation factors other than 1 are rarely required for
transient runs and hence the same for all iterations including the final one
this approach provide simpler input while still providing the flexibility to
specify a different value for the final iteration if required.  For steady cases
it is usual to execute just 1 outer iteration per time-step for which the
standard relaxation factors are appropriate, and if more than one iteration is
executed it is common to use the same factors for both.  In the unlikely event
of requiring different relaxation factors for the final iteration this is still
possible to specify via the now optional "Final" specification.
2018-11-17 19:42:23 +00:00
fdbf3c134f Rationalized dictionary and configuration file headers 2018-07-09 15:40:05 +01:00
bf54ab67e1 Updated OpenFOAM Foundation web-link in headers 2018-07-06 21:42:54 +01:00
019ae8bab3 tutorials: Changed compressed ascii output to binary to improve IO performance
also rationalized the writeCompression specification
2018-06-27 15:25:52 +01:00
85e249e61d chemFoam: Changed from psi to rho thermo to support both liquid and gaseous reactions 2018-06-21 21:59:59 +01:00
bf52a98e09 tutorials::Allrun: getApplication -> $(getApplication) 2018-05-28 22:20:07 +01:00
15a2e7f6e9 combustionModel, chemistryModel: Simplified model selection
Updated all tutorials to the new format
2017-12-11 15:20:47 +00:00
c339d3018c PBiCGStab: New preconditioned bi-conjugate gradient stabilized solver for asymmetric lduMatrices
using a run-time selectable preconditioner

References:
    Van der Vorst, H. A. (1992).
    Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG
    for the solution of nonsymmetric linear systems.
    SIAM Journal on scientific and Statistical Computing, 13(2), 631-644.

    Barrett, R., Berry, M. W., Chan, T. F., Demmel, J., Donato, J.,
    Dongarra, J., Eijkhout, V., Pozo, R., Romine, C. & Van der Vorst, H.
    (1994).
    Templates for the solution of linear systems:
    building blocks for iterative methods
    (Vol. 43). Siam.

See also: https://en.wikipedia.org/wiki/Biconjugate_gradient_stabilized_method

Tests have shown that PBiCGStab with the DILU preconditioner is more
robust, reliable and shows faster convergence (~2x) than PBiCG with
DILU, in particular in parallel where PBiCG occasionally diverges.

This remarkable improvement over PBiCG prompted the update of all
tutorial cases currently using PBiCG to use PBiCGStab instead.  If any
issues arise with this update please report on Mantis: http://bugs.openfoam.org
2016-09-05 11:46:42 +01:00
a89cd81aff tutorials: Remove the unnecessary "\"s on "cp", "rm" and "mv"
Resolves bug-report http://bugs.openfoam.org/view.php?id=2077
2016-05-05 15:17:55 +01:00
fa0656c358 scripts: Reformat with consistent section separators 2016-02-15 18:30:24 +00:00
7c762bb90d foamRunTutorials: Rationalized support for the "-test" option
RunFunctions: Added "isTest()" argument parsing function
tutorials: Updated Allrun scripts to propagate the "-test" option
tutorials: Removed the lower Alltest scripts and updated the Allrun to
    use the "isTest()" function to handle test-specific operation
2016-02-15 15:49:05 +00:00
36cd8d0c0e chemFoam: Remove unused turbulence model 2015-11-21 18:30:35 +00:00
cc942ed18e chemkinReader: Add support for reading transport properties from dictionary
Note the dictionary is in OpenFOAM format not CHEMKIN.

Patch provided by Daniel Jasinski
Resolves feature request http://www.openfoam.org/mantisbt/view.php?id=1888
2015-11-20 18:55:36 +00:00
dc0523643f fluxRequired: Added setFluxRequired function to fvSchemes class
Added calls to setFluxRequired for p, p_rgh etc. in all solvers which
avoids the need to add fluxRequired entries in fvSchemes dictionaries.
2015-07-15 21:57:16 +01:00
195c566562 Minor change to comment 2014-12-14 21:50:14 +00:00
446e5777f0 Add the OpenFOAM source tree 2014-12-10 22:40:10 +00:00