The keyword 'select' is now used to specify the cell, face or point set
selection method consistently across all classes requiring this functionality.
'select' replaces the inconsistently named 'regionType' and 'selectionMode'
keywords used previously but backwards-compatibility is provided for user
convenience. All configuration files and tutorials have been updated.
Examples of 'select' from the tutorial cases:
functionObjects:
cellZoneAverage
{
type volFieldValue;
libs ("libfieldFunctionObjects.so");
writeControl writeTime;
writeInterval 1;
fields (p);
select cellZone;
cellZone injection;
operation volAverage;
writeFields false;
}
#includeFunc populationBalanceSizeDistribution
(
name=numberDensity,
populationBalance=aggregates,
select=cellZone,
cellZone=outlet,
functionType=numberDensity,
coordinateType=projectedAreaDiameter,
allCoordinates=yes,
normalise=yes,
logTransform=yes
)
fvModel:
cylinderHeat
{
type heatSource;
select all;
q 5e7;
}
fvConstraint:
momentumForce
{
type meanVelocityForce;
select all;
Ubar (0.1335 0 0);
}
This boundary condition now solves for the wall temperature by interval
bisection, which should be significantly more robust than the previous
fixed-point iteration procedure. There is a new non-dimensional
"tolerance" setting that controls how tightly this solution procedure
solves the wall temperature. The "relax" setting is no longer used.
The boundary condition no longer triggers re-evaluation of the
temperature condition in order to re-calculate the heat flux within the
solution iteration. Instead, it extracts physical coefficients from the
form of the boundary condition and uses these to form a linearised
approximation of the heat flux. This is a more general approach, and
will not trigger side-effects associated with re-evaluating the
temperature condition.
The fixedMultiphaseHeatFlux condition has been replaced by a
uniformFixedMultiphaseHeatFlux condition, which constructs a mixed
constraint which portions a specified heat flux between the phases in
such a way as to keep the boundary temperature uniform across all
phases. This can be applied to all phases. It is no longer necessary to
apply a heat flux model to one "master" phase, then map the resulting
temperature to the others. An example specification of this boundary
condition is as follows:
wall
{
type uniformFixedMultiphaseHeatFlux;
q 1000;
relax 0.3;
value $internalField;
}
The wall boiling tutorials have been updated to use these new functions,
and time-varying heat input has been used to replace the
stop-modify-restart pattern present in the single-region cases.