for consistency with fvModels and fvConstraints, to simplify code and case
maintenance and to avoid the potentially complex functions entries being
unnecessarily parsed by utilities for which functionObject evaluation is
disabled.
The functions entry in controlDict is still read if the functions file is not
present for backward-compatibility, but it is advisable to migrate cases to use
the new functions file.
The fact that these names create sources in their associated transport
equations is clear in context, so the name does not need to contain
'Source'.
Having 'Source' in the name is a historic convention that dates back to
when fvModels and fvConstraints were combined in a single fvOptions
interface. In this interface, disambiguation between sources and
constraints was necessary.
The full set of name changes is as follows:
accelerationSource -> acceleration
actuationDiskSource -> actuationDisk
effectivenessHeatExchangerSource -> effectivenessHeatExchanger
explicitPorositySource -> porosityForce
radialActuationDiskSource -> radialActuationDisk
rotorDiskSource -> rotorDisk
sixDoFAccelerationSource -> sixDoFAcceleration
solidEquilibriumEnergySource -> solidThermalEquilibrium
solidificationMeltingSource -> solidificationMelting
volumeFractionSource -> volumeBlockage
interRegionExplicitPorositySource -> interRegionPorosityForce
VoFSolidificationMeltingSource -> VoFSolidificationMelting
The old names are still available for backwards compatibility.
When an fvModel source introduces fluid into a simulation it should also
create a corresponding source term for all properties transported into
the domain by that injection. The source is, effectively, an alternative
form of inlet boundary, on which all transported properties need an
inlet value specified.
These values are now specified in the property field files. The
following is an example of a 0/U file in which the velocity of fluid
introduced by a fvModel source called "injection1" is set to a fixed
value of (-1 0 0):
dimensions [0 1 -1 0 0 0 0];
internalField uniform (0 0 0);
boundaryField
{
#includeEtc "caseDicts/setConstraintTypes"
wall
{
type noSlip;
}
atmosphere
{
type pressureInletOutletVelocity;
value $internalField;
}
}
// *** NEW ***
sources
{
injection1
{
type uniformFixedValue;
uniformValue (-1 0 0);
}
}
And the following entry in the 0/k file specifies the turbulent kinetic
energy introduced as a fraction of the mean flow kinetic energy:
sources
{
injection1
{
type turbulentIntensityKineticEnergy;
intensity 0.05;
}
}
The specification is directly analogous to boundary conditions. The
conditions are run-time selectable and can be concisely implemented.
They can access each other and be inter-dependent (e.g., the above,
where turbulent kinetic energy depends on velocity). The syntax keeps
field data localised and makes the source model (e.g., massSource,
volumeSource, ...) specification independent from what other models and
fields are present in the simulation. The 'fieldValues' entry previously
required by source models is now no longer required.
If source values need specifying and no source condition has been
supplied in the relevant field file then an error will be generated.
This error is similar to that generated for missing boundary conditions.
This replaces the behaviour where sources such as these would introduce
a value of zero, either silently or with a warning. This is now
considered unacceptable. Zero might be a tolerable default for certain
fields (U, k), but is wholly inappropriate for others (T, epsilon, rho).
This change additionally makes it possible to inject fluid into a
multicomponent solver with a specified temperature. Previously, it was
not possible to do this as there was no means of evaluating the energy
of fluid with the injected composition.
This fvModel applies a volume source to the continuity equation and to
all field equations. It can be applied to incompressible solvers, such
as incompressibleFluid and incompressibleVoF. For compressible solvers,
use the massSource model instead.
If the volumetric flow rate is positive then user-supplied fixed
property values are introduced to the field equations. If the volumetric
flow rate is negative then properties are removed at their current
value.
Example usage:
volumeSource
{
type volumeSource;
select cellSet;
cellSet volumeSource;
volumetricFlowRate 1e-4;
fieldValues
{
U (10 0 0);
k 0.375;
epsilon 14.855;
}
}
If the volumetric flow rate is positive then values should be provided
for all solved for fields. Warnings will be issued if values are not
provided for fields for which transport equations are solved. Warnings
will also be issued if values are provided for fields which are not
solved for.
Description
Calculates and applies the random OU (Ornstein-Uhlenbeck) process force to
the momentum equation for direct numerical simulation of boxes of isotropic
turbulence.
The energy spectrum is calculated and written at write-times which is
particularly useful to test and compare LES SGS models.
Note
This random OU process force uses a FFT to generate the force field which
is not currently parallelised. Also the mesh the FFT is applied to must
be isotropic and have a power of 2 cells in each direction.
Usage
Example usage:
\verbatim
OUForce
{
type OUForce;
libs ("librandomProcesses.so");
sigma 0.090295;
alpha 0.81532;
kUpper 10;
kLower 7;
}
\endverbatim
The tutorials/incompressibleFluid/boxTurb16 tutorial case is an updated version
of the original tutorials/legacy/incompressible/dnsFoam/boxTurb16 case,
demonstrating the use of the OUForce fvModel with the incompressibleFluid solver
module to replicate the behaviour of the legacy dnsFoam solver application.
Simplifications have been made where possible, as permitted by the new
$<type>var syntax. Duplication has been reduced in similar blockMesh
files (e.g., sloshingTank cases). Settings that cannot practically be
changed have been hard-coded (e.g., angle in the mixerVessel2D
blockMeshDict). The rotor2D blockMeshDict has been centralised and
extended to work with an arbitrary number of rotor blades.
Description
fvMeshTopoChanger which maps the fields to a new mesh or sequence of meshes
which can optionally be mapped to repeatedly for example in multi-cycle
engine cases or cycled through for symmetric forward and reverse motion.
Usage
\table
Property | Description | Required | Default value
libs | Libraries to load | no |
times | List of times for the meshes | yes |
repeat | Repetition period | no |
cycle | Cycle period | no |
begin | Begin time for the meshes | no | Time::beginTime()
timeDelta | Time tolerance used for time -> index | yes |
\endtable
Examples of the mesh-to-mesh mapping for the multi-cycle
tutorials/incompressibleFluid/movingCone case:
\verbatim
topoChanger
{
type meshToMesh;
libs ("libmeshToMeshTopoChanger.so");
times (0.0015 0.003);
cycle #calc "1.0/300.0";
begin 0;
timeDelta 1e-6;
}
\endverbatim