which simplifies the reactingEulerFoam populationBalance test cases.
Patch contributed by Institute of Fluid Dynamics, Helmholtz-Zentrum
Dresden - Rossendorf (HZDR)
The initial set of cases in the test directory are aimed at testing the
reactingEulerFoam populationBalance functionality.
Patch contributed by Institute of Fluid Dynamics, Helmholtz-Zentrum
Dresden - Rossendorf (HZDR) and VTT Technical Research Centre of Finland Ltd.
Integrated with the "tutorials" functionality by CFD Direct Ltd.
This change means that getApplication still works if we have a
controlDict.orig, rather than a controlDict. This allows us to simplify
the scripting of tutorials in which the controlDict is modified.
Now if a <field> file does not exist first the compressed <field>.gz file is
searched for and if that also does not exist the <field>.orig file is searched
for.
This simplifies case setup and run scripts as now setField for example can read
the <field>.orig file directly and generate the <field> file from it which is
then read by the solver. Additionally the cleanCase function used by
foamCleanCase and the Allclean scripts automatically removed <field> files if
there is a corresponding <field>.orig file. So now there is no need for the
Allrun scripts to copy <field>.orig files into <field> or for the Allclean
scripts to explicitly remove them.
With the writeJobInfo option in OpenFOAM-dev/etc/controlDict::InfoSwitches set
to 1 each OpenFOAM executable writes a <executable>.<pid> file containing the
job summary into the <case>/jobInfo directory, e.g. after running the
tutorials/incompressible/pisoFoam/RAS/cavity tutorials
tutorials/incompressible/pisoFoam/RAS/cavity/jobInfo contains
blockMesh.20169 pisoFoam.20170
The continuation line are denoted by the \\ characters at the end of the
previous line e.g.
\table
Property | Description | Required | Default value
setAverage | Switch to activate setting of average value | no | false
perturb | Perturb points for regular geometries | no | 1e-5
fieldTableName | Alternative field name to sample | no| this field name
mapMethod | Type of mapping | no | planarInterpolation
offset | Offset to mapped values | no | Zero
dataDir | Top-level directory of the points and field data \\
| no | constant/boundaryData/\<patch name\>
points | Path including name of points file relative to dataDir \\
| no | points
sample | Name of the sub-directory in the time directories \\
containing the fields | no | ""
\endtable
Patch contributed by Bruno Santos
Resolves bug-report http://bugs.openfoam.org/view.php?id=2267
1. Spaced ending of multi-level template parameters are not allowed, such as:
List<List<scalar> >
which instead should be:
List<List<scalar>>
2. The use of the 'NULL' macro should be replaced by 'nullptr'
Provides efficient integration of complex laminar reaction chemistry,
combining the advantages of automatic dynamic specie and reaction
reduction with ISAT (in situ adaptive tabulation). The advantages grow
as the complexity of the chemistry increases.
References:
Contino, F., Jeanmart, H., Lucchini, T., & D’Errico, G. (2011).
Coupling of in situ adaptive tabulation and dynamic adaptive chemistry:
An effective method for solving combustion in engine simulations.
Proceedings of the Combustion Institute, 33(2), 3057-3064.
Contino, F., Lucchini, T., D'Errico, G., Duynslaegher, C.,
Dias, V., & Jeanmart, H. (2012).
Simulations of advanced combustion modes using detailed chemistry
combined with tabulation and mechanism reduction techniques.
SAE International Journal of Engines,
5(2012-01-0145), 185-196.
Contino, F., Foucher, F., Dagaut, P., Lucchini, T., D’Errico, G., &
Mounaïm-Rousselle, C. (2013).
Experimental and numerical analysis of nitric oxide effect on the
ignition of iso-octane in a single cylinder HCCI engine.
Combustion and Flame, 160(8), 1476-1483.
Contino, F., Masurier, J. B., Foucher, F., Lucchini, T., D’Errico, G., &
Dagaut, P. (2014).
CFD simulations using the TDAC method to model iso-octane combustion
for a large range of ozone seeding and temperature conditions
in a single cylinder HCCI engine.
Fuel, 137, 179-184.
Two tutorial cases are currently provided:
+ tutorials/combustion/chemFoam/ic8h18_TDAC
+ tutorials/combustion/reactingFoam/laminar/counterFlowFlame2D_GRI_TDAC
the first of which clearly demonstrates the advantage of dynamic
adaptive chemistry providing ~10x speedup,
the second demonstrates ISAT on the modest complex GRI mechanisms for
methane combustion, providing a speedup of ~4x.
More tutorials demonstrating TDAC on more complex mechanisms and cases
will be provided soon in addition to documentation for the operation and
settings of TDAC. Also further updates to the TDAC code to improve
consistency and integration with the rest of OpenFOAM and further
optimize operation can be expected.
Original code providing all algorithms for chemistry reduction and
tabulation contributed by Francesco Contino, Tommaso Lucchini, Gianluca
D’Errico, Hervé Jeanmart, Nicolas Bourgeois and Stéphane Backaert.
Implementation updated, optimized and integrated into OpenFOAM-dev by
Henry G. Weller, CFD Direct Ltd with the help of Francesco Contino.
RunFunctions: Added "isTest()" argument parsing function
tutorials: Updated Allrun scripts to propagate the "-test" option
tutorials: Removed the lower Alltest scripts and updated the Allrun to
use the "isTest()" function to handle test-specific operation
in decomposeParDict.
This default number of processors may be overridden by the new "-np"
option to runParallel which must be specified before the application
name e.g.:
runParallel -np 4 pisoFoam