e.g. (fvc::interpolate(HbyA) & mesh.Sf()) -> fvc::flux(HbyA)
This removes the need to create an intermediate face-vector field when
computing fluxes which is more efficient, reduces the peak storage and
improved cache coherency in addition to providing a simpler and cleaner
API.
The deprecated non-const tmp functionality is now on the compiler switch
NON_CONST_TMP which can be enabled by adding -DNON_CONST_TMP to EXE_INC
in the Make/options file. However, it is recommended to upgrade all
code to the new safer tmp by using the '.ref()' member function rather
than the non-const '()' dereference operator when non-const access to
the temporary object is required.
Please report any problems on Mantis.
Henry G. Weller
CFD Direct.
To be used instead of zeroGradientFvPatchField for temporary fields for
which zero-gradient extrapolation is use to evaluate the boundary field
but avoiding fields derived from temporary field using field algebra
inheriting the zeroGradient boundary condition by the reuse of the
temporary field storage.
zeroGradientFvPatchField should not be used as the default patch field
for any temporary fields and should be avoided for non-temporary fields
except where it is clearly appropriate;
extrapolatedCalculatedFvPatchField and calculatedFvPatchField are
generally more suitable defaults depending on the manner in which the
boundary values are specified or evaluated.
The entire OpenFOAM-dev code-base has been updated following the above
recommendations.
Henry G. Weller
CFD Direct
Function1 is an abstract base-class of run-time selectable unary
functions which may be composed of other Function1's allowing the user
to specify complex functions of a single scalar variable, e.g. time.
The implementations need not be a simple or continuous functions;
interpolated tables and polynomials are also supported. In fact form of
mapping between a single scalar input and a single primitive type output
is supportable.
The primary application of Function1 is in time-varying boundary
conditions, it also used for other functions of time, e.g. injected mass
is spray simulations but is not limited to functions of time.
Solidification phase change model where all film mass is converted when the
local temperature > activation temperature. The latent heat is
assumed to be removed by heat-transfer to the wall.
The old separate incompressible and compressible libraries have been removed.
Most of the commonly used RANS and LES models have been upgraded to the
new framework but there are a few missing which will be added over the
next few days, in particular the realizable k-epsilon model. Some of
the less common incompressible RANS models have been introduced into the
new library instantiated for incompressible flow only. If they prove to
be generally useful they can be templated for compressible and
multiphase application.
The Spalart-Allmaras DDES and IDDES models have been thoroughly
debugged, removing serious errors concerning the use of S rather than
Omega.
The compressible instances of the models have been augmented by a simple
backward-compatible eddyDiffusivity model for thermal transport based on
alphat and alphaEff. This will be replaced with a separate run-time
selectable thermal transport model framework in a few weeks.
For simplicity and ease of maintenance and further development the
turbulent transport and wall modeling is based on nut/nuEff rather than
mut/muEff for compressible models so that all forms of turbulence models
can use the same wall-functions and other BCs.
All turbulence model selection made in the constant/turbulenceProperties
dictionary with RAS and LES as sub-dictionaries rather than in separate
files which added huge complexity for multiphase.
All tutorials have been updated so study the changes and update your own
cases by comparison with similar cases provided.
Sorry for the inconvenience in the break in backward-compatibility but
this update to the turbulence modeling is an essential step in the
future of OpenFOAM to allow more models to be added and maintained for a
wider range of cases and physics. Over the next weeks and months more
turbulence models will be added of single and multiphase flow, more
additional sub-models and further development and testing of existing
models. I hope this brings benefits to all OpenFOAM users.
Henry G. Weller
When using models which require the wallDist e.g. kOmegaSST it will
request the method to be used from the wallDist sub-dictionary in
fvSchemes e.g.
wallDist
{
method meshWave;
}
specifies the mesh-wave method as hard-coded in previous OpenFOAM versions.