Commit Graph

1289 Commits

Author SHA1 Message Date
6628a49daf tutorials: Updated for standardised thermo property names 2023-12-01 17:13:22 +00:00
ec8e9b6e6e tutorials/XiFluid/kivaTest: Reverted dynamicMeshDict
Resolves bug-report https://bugs.openfoam.org/view.php?id=4036
2023-11-19 16:52:02 +00:00
836ce9a302 solutionControl: Added finalIteration function to replace the data class
The final iteration state is now available from the solutionControl class via
the new finalIteration() static function, replacing the old data class from
which fvMesh was derived.  This approach is simpler, more reliable and easier to
extend and reduces the clutter associated with fvMesh.
2023-11-17 15:30:56 +00:00
03ec16135a fvMesh: Added independent readUpdateState enumeration
This lets calling code determine the difference between a polyMesh
topology change and a re-stitch. This prevents unnecessary
post-processing output in a few cases when using NCC; most notably the
generation of cellProc fields by reconstructPar.
2023-11-08 14:43:52 +00:00
9af6bd527a fvMeshStitcher: Compatibility with run-time distribution
A number of fixes have been made in order to make non-conformal cyclic
patches compatible with run-time distribution.

A tutorial case, incompressibleVoF/rotatingCube, has been added which
demonstrates simultaneous usage of motion, non-conformal couplings,
adaptive refinement and load-balancing.
2023-11-03 14:03:53 +00:00
cf4149f42f tutorials/incompressibleVoF/propeller: Added run-time post processing 2023-11-02 10:10:07 +00:00
819c9388f1 tutorials/incompressibleFluid/cavity: Removed constant/polyMesh 2023-10-23 08:57:24 +01:00
6628666770 dynamicMeshCheck merged into meshCheck 2023-10-20 17:46:04 +01:00
e0bdf2405e fvModels: Remove 'Source' from names
The fact that these names create sources in their associated transport
equations is clear in context, so the name does not need to contain
'Source'.

Having 'Source' in the name is a historic convention that dates back to
when fvModels and fvConstraints were combined in a single fvOptions
interface. In this interface, disambiguation between sources and
constraints was necessary.

The full set of name changes is as follows:

                   accelerationSource -> acceleration
                  actuationDiskSource -> actuationDisk
     effectivenessHeatExchangerSource -> effectivenessHeatExchanger
               explicitPorositySource -> porosityForce
            radialActuationDiskSource -> radialActuationDisk
                      rotorDiskSource -> rotorDisk
             sixDoFAccelerationSource -> sixDoFAcceleration
         solidEquilibriumEnergySource -> solidThermalEquilibrium
          solidificationMeltingSource -> solidificationMelting
                 volumeFractionSource -> volumeBlockage
    interRegionExplicitPorositySource -> interRegionPorosityForce
       VoFSolidificationMeltingSource -> VoFSolidificationMelting

The old names are still available for backwards compatibility.
2023-10-13 09:53:32 +01:00
16ecc4fe08 fvConstraints: Remove 'Constraint' from constraint names
The fact that these names refer to constraints is clear in context, so
the name does not need to contain 'Constraint'.

Having 'Constraint' in the name is a historic convention that dates back
to when fvConstraints and fvModels were combined in a single fvOptions
interface. In this interface, disambiguation between sources and
constraints was necessary.

This change has been applied to the 'fixedValue' and 'fixedTemperature'
constraints, which were formerly named 'fixedValueConstraint' and
'fixedTemperatureConstraint', respectively.

The old names are still available for backwards compatibility.
2023-10-13 09:53:32 +01:00
171101d1e5 fvModels: Specify source property values in field files
When an fvModel source introduces fluid into a simulation it should also
create a corresponding source term for all properties transported into
the domain by that injection. The source is, effectively, an alternative
form of inlet boundary, on which all transported properties need an
inlet value specified.

These values are now specified in the property field files. The
following is an example of a 0/U file in which the velocity of fluid
introduced by a fvModel source called "injection1" is set to a fixed
value of (-1 0 0):

    dimensions      [0 1 -1 0 0 0 0];

    internalField   uniform (0 0 0);

    boundaryField
    {
        #includeEtc "caseDicts/setConstraintTypes"

        wall
        {
            type            noSlip;
        }

        atmosphere
        {
            type            pressureInletOutletVelocity;
            value           $internalField;
        }
    }

    // *** NEW ***
    sources
    {
        injection1
        {
            type            uniformFixedValue;
            uniformValue    (-1 0 0);
        }
    }

And the following entry in the 0/k file specifies the turbulent kinetic
energy introduced as a fraction of the mean flow kinetic energy:

    sources
    {
        injection1
        {
            type            turbulentIntensityKineticEnergy;
            intensity       0.05;
        }
    }

The specification is directly analogous to boundary conditions. The
conditions are run-time selectable and can be concisely implemented.
They can access each other and be inter-dependent (e.g., the above,
where turbulent kinetic energy depends on velocity). The syntax keeps
field data localised and makes the source model (e.g., massSource,
volumeSource, ...) specification independent from what other models and
fields are present in the simulation. The 'fieldValues' entry previously
required by source models is now no longer required.

If source values need specifying and no source condition has been
supplied in the relevant field file then an error will be generated.
This error is similar to that generated for missing boundary conditions.
This replaces the behaviour where sources such as these would introduce
a value of zero, either silently or with a warning. This is now
considered unacceptable. Zero might be a tolerable default for certain
fields (U, k), but is wholly inappropriate for others (T, epsilon, rho).

This change additionally makes it possible to inject fluid into a
multicomponent solver with a specified temperature. Previously, it was
not possible to do this as there was no means of evaluating the energy
of fluid with the injected composition.
2023-10-12 11:24:27 +01:00
5e03874bbb multiphaseEuler: Updated to us the new phaseSolidThermophysicalTransportModel class
for thermophysical transport within stationary solid phases.  This provides a
consistent interface to heat transport within solids for single and now
multiphase solvers so that for example the wallHeatFlux functionObject can now
be used with multiphaseEuler, see tutorials/multiphaseEuler/boilingBed.
Also this development supports anisotropic thermal conductivity within the
stationary solid regions which was not possible previously.

The tutorials/multiphaseEuler/bed and tutorials/multiphaseEuler/boilingBed
tutorial cases have been updated for phaseSolidThermophysicalTransportModel by
changing the thermo type in physicalProperties.solid to heSolidThermo.  This
change will need to be made to all multiphaseEuler cases involving stationary
phases.
2023-10-11 14:53:09 +01:00
8b2e6b9758 tutorials/multiphaseEuler: Added boilingBed tutorial
This tutorial serves as an example of a boiling transfer between two
phases, which occurs on the surface of a third stationary phase. See
commit 32edc48d for details of this modelling and its specification.

Patch contributed by Juho Peltola, VTT.
2023-09-28 16:06:30 +01:00
9181a699f2 fvModels: Added volumeSource model
This fvModel applies a volume source to the continuity equation and to
all field equations. It can be applied to incompressible solvers, such
as incompressibleFluid and incompressibleVoF. For compressible solvers,
use the massSource model instead.

If the volumetric flow rate is positive then user-supplied fixed
property values are introduced to the field equations. If the volumetric
flow rate is negative then properties are removed at their current
value.

Example usage:

    volumeSource
    {
        type            volumeSource;

        select          cellSet;
        cellSet         volumeSource;

        volumetricFlowRate 1e-4;

        fieldValues
        {
            U               (10 0 0);
            k               0.375;
            epsilon         14.855;
        }
    }

If the volumetric flow rate is positive then values should be provided
for all solved for fields. Warnings will be issued if values are not
provided for fields for which transport equations are solved. Warnings
will also be issued if values are provided for fields which are not
solved for.
2023-09-28 09:04:36 +01:00
a5ea0b41f1 fvModels: Improved interface for mass/volume sources
The interface for fvModels has been modified to improve its application
to "proxy" equations. That is, equations that are not straightforward
statements of conservation laws in OpenFOAM's usual convention.

A standard conservation law typically takes the following form:

    fvMatrix<scalar> psiEqn
    (
        fvm::ddt(alpha, rho, psi)
      + <fluxes>
     ==
        <sources>
    );

A proxy equation, on the other hand, may be a derivation or
rearrangement of a law like this, and may be linearised in terms of a
different variable.

The pressure equation is the most common example of a proxy equation. It
represents a statement of the conservation of volume or mass, but it is
a rearrangement of the original continuity equation, and it has been
linearised in terms of a different variable; the pressure. Another
example is that in the pre-predictor of a VoF solver the
phase-continuity equation is constructed, but it is linearised in terms
of volume fraction rather than density.

In these situations, fvModels sources are now applied by calling:

    fvModels().sourceProxy(<conserved-fields ...>, <equation-field>)

Where <conserved-fields ...> are (alpha, rho, psi), (rho, psi), just
(psi), or are omitted entirely (for volume continuity), and the
<equation-field> is the field associated with the proxy equation. This
produces a source term identical in value to the following call:

    fvModels().source(<conserved-fields ...>)

It is only the linearisation in terms of <equation-field> that differs
between these two calls.

This change permits much greater flexibility in the handling of mass and
volume sources than the previous name-based system did. All the relevant
fields are available, dimensions can be used in the logic to determine
what sources are being constructed, and sources relating to a given
conservation law all share the same function.

This commit adds the functionality for injection-type sources in the
compressibleVoF solver. A following commit will add a volume source
model for use in incompressible solvers.
2023-09-28 09:04:31 +01:00
4b6eade88c tutorials/incompressibleVoF/damBreak: Simplification of variants 2023-09-26 14:03:48 +01:00
76afad69ba functionObjects: Updated remaining outputTime -> writeTime 2023-09-22 11:11:55 +01:00
b1d56acb91 tutorials: pitzDailySteadyMapped*: Updated for changes in source case 2023-09-19 14:38:22 +01:00
e7e6d6a3cc tutorials/mesh/refineMesh/sector: Renamed functionObjects for consistency 2023-09-18 11:39:59 +01:00
58cb08d8cd tutorials/incompressibleFluid/pitzDailySteady: Added strainRate coded functionObject
to demonstrate how easy it is to add field post-processing to cases.
2023-09-18 11:38:54 +01:00
597121a4a7 multiphaseEuler: Library reorganisation
This change makes multiphaseEuler more consistent with other modules and
makes its sub-libraries less inter-dependent. Some left-over references
to multiphaseEulerFoam have also been removed.
2023-09-15 14:45:26 +01:00
fca802fa82 fvModels::waveForcing: Added an easier specification of the forcing coefficients
Description
    This fvModel applies forcing to the liquid phase-fraction field and all
    components of the vector field to relax the fields towards those
    calculated from the current wave distribution.

    The force coefficient \f$\lambda\f$ should be set based on the desired level
    of forcing and the residence time the waves through the forcing zone.  For
    example, if waves moving at 2 [m/s] are travelling through a forcing zone 8
    [m] in length, then the residence time is 4 [s]. If it is deemed necessary
    to force for 5 time-scales, then \f$\lambda\f$ should be set to equal 5/(4
    [s]) = 1.2 [1/s].  If more aggressive forcing is required adjacent to the
    boundaries, which is often the case if wave boundary conditions are
    specified at outflow boundaries, the optional \f$\lambdaBoundary\f$
    coefficient can be specified higher than the value of \f$\lambda\f$.

    Alternatively the forcing force coefficient \f$\lambdaCoeff\f$ can be
    specified in which case \f$\lambda\f$ is evaluated by multiplying the
    maximum wave speed by \f$\lambdaCoeff\f$ and dividing by the forcing region
    length.  \f$\lambdaBoundary\f$ is similarly evaluated from
    \f$\lambdaBoundaryCoeff\f$ if specified.

Usage
    Example usage:
    \verbatim
    waveForcing1
    {
        type            waveForcing;

        libs            ("libwaves.so");

        liquidPhase     water;

        // Define the line along which to apply the graduation
        origin          (600 0 0);
        direction       (-1 0 0);

        // // Or, define multiple lines
        // origins         ((600 0 0) (600 -300 0) (600 300 0));
        // directions      ((-1 0 0) (0 1 0) (0 -1 0));

        scale
        {
            type        halfCosineRamp;
            start       0;
            duration    300;
        }

        lambdaCoeff     2;   // Forcing coefficient

     // lambdaBoundaryCoeff  10;  // Optional boundary forcing coefficient
                             // Useful when wave BCs are specified at outlets

        // Write the forcing fields: forcing:scale, forcing:forceCoeff
        writeForceFields true;
    }
    \endverbatim
2023-09-14 13:15:30 +01:00
0eb3479f9b Merge branch 'master' of github.com-OpenFOAM:OpenFOAM/OpenFOAM-dev 2023-09-08 15:11:19 +01:00
7b6b758dd8 waves::fvModels::forcing: Added option to write the forcing fields
e.g.

    waveForcing1
    {
        type            waveForcing;

        libs            ("libwaves.so");

        liquidPhase     water;

        // Define the line along which to apply the graduation
        origin          (600 0 0);
        direction       (-1 0 0);

        // // Or, define multiple lines
        // origins         ((600 0 0) (600 -300 0) (600 300 0));
        // directions      ((-1 0 0) (0 1 0) (0 -1 0));

        scale
        {
            type        halfCosineRamp;
            start       0;
            duration    300;
        }

        lambda          0.5; // Forcing coefficient

     // lambdaBoundary  2;   // Optional boundary forcing coefficient
                             // Useful when wave BCs are specified
                             // without mean flow

        // Write the forcing fields: forcing:scale, forcing:forceCoeff
        writeForceFields true;
    }

will write the fields forcing:scale and forcing:forceCoeff at the start of the
run to visualise and check correctness.
2023-09-08 15:09:56 +01:00
8811d390e7 CloudFunctionObjects: VolumeFraction: Register field
This means the field can be used by other run-time post-processing
functions; e.g., with '#includeFunc volIntegrate(cloud:alpha)'.
2023-09-08 09:10:02 +01:00
815f0b1627 convergenceControl: Simplified convergence control for multi-region cases
In order to add convergence control to multi-region cases it is no longer
necessary to provide a residualControl entry in all region, convergence
specification can be provided for any sub-set of the region for which particular
residual levels should be met.

The tutorials/multiRegion/CHT/circuitBoardCooling case now has valid convergence
criteria to demonstrate this change.
2023-09-06 10:11:57 +01:00
85791217a8 tutorials/multiphaseEuler/hydrofoil: Improve graph formatting 2023-08-31 12:05:40 +01:00
a05df4abe0 populationBalance: Standardise default field handling
Population balance size-group fraction 'f<index>.<phase>' fields are now
read from an 'fDefault.<phase>' field if they are not provided
explicitly. This is the same process as is applied to species fractions
or fvDOM rays. The sum-of-fs field 'f.<phase>' is no longer required.

The value of a fraction field and its boundary conditions must now be
specified in the corresponding field file. Value entries are no longer
given in the size group dictionaries in the constant/phaseProperties
file, and an error message will be generated if a value entry is found.

The fraction fields are now numbered programatically, rather than being
named. So, the size-group dictionaries do not require a name any more.

All of the above is also true for any 'kappa<index>.<phase>' fields that
are constructed and solved for as part of a fractal shape model.

The following is an example of a specification of a population balance
with two phases in it:

    populationBalances (bubbles);

    air1
    {
        type            pureIsothermalPhaseModel;
        diameterModel   velocityGroup;
        velocityGroupCoeffs
        {
            populationBalance bubbles;
            shapeModel      spherical;
            sizeGroups
            (
                { dSph 1e-3; } // Size-group #0: Fraction field f0.air1
                { dSph 2e-3; } // ...
                { dSph 3e-3; }
                { dSph 4e-3; }
                { dSph 5e-3; }
            );
        }
        residualAlpha   1e-6;
    }

    air2
    {
        type            pureIsothermalPhaseModel;
        diameterModel   velocityGroup;
        velocityGroupCoeffs
        {
            populationBalance bubbles;
            shapeModel      spherical;
            sizeGroups
            (
                { dSph 6e-3; } // Size-group #5: Fraction field f5.air2
                { dSph 7e-3; } // ...
                { dSph 8e-3; }
                { dSph 9e-3; }
                { dSph 10e-3; }
                { dSph 11e-3; }
                { dSph 12e-3; }
            );
        }
        residualAlpha   1e-6;
    }

Previously a fraction field was constructed automatically using the
boundary condition types from the sum-of-fs field, and the value of both
the internal and boundary field was then overridden by the value setting
provided for the size-group. This procedure doesn't generalise to
boundary conditions other than basic types that store no additional
data, like zeroGradient and fixedValue. More complex boundary conditions
such as inletOutlet and uniformFixedValue are incompatible with this
approach.

This is arguably less convenient than the previous specification, where
the sizes and fractions appeared together in a table-like list in the
sizeGroups entry. In the event that a substantial proportion of the
size-groups have a non-zero initial fraction, writing out all the field
files manually is extremely tedious. To mitigate this somewhat, a
packaged function has been added to initialise the fields given a file
containing a size distribution (see the pipeBend tutorial for an example
of its usage). This function has the same limitations as the previous
code in that it requires all boundary conditions to be default
constructable.

Ultimately, the "correct" fix for the issue of how to set the boundary
conditions conveniently is to create customised inlet-outlet boundary
conditions that determine their field's position within the population
balance and evaluate a distribution to determine the appropriate inlet
value. This work is pending funding.
2023-08-31 12:05:12 +01:00
a0c391b8bd multiphaseEuler: Corrected handling of pRef 2023-08-30 14:16:09 +01:00
381e95039b tutorials/multiphaseEuler/mixerVessel2D: Removed 0/alpha.map file 2023-08-30 14:16:09 +01:00
5fd30443f3 multiphaseEuler: New implicit drag algorithm replaces partial-elimination corrector
The momentum equation central coefficient and drag matrix is formulated,
inverted and used to eliminate the drag terms from each of the phase momentum
equations which are combined for formulate a drag-implicit pressure equation.
This eliminates the lagged drag terms from the previous formulation which
significantly improves convergence for small particle and Euler-VoF high-drag
cases.

It would also be possible to refactor the virtual-mass terms and include the
central coefficients of the phase acceleration terms in the drag matrix before
inversion to further improve the implicitness of the phase momentum-pressure
coupling for bubbly flows.  This work is pending funding.
2023-08-26 10:09:38 +01:00
3c542d664b thermophysicalModels: Primitive mixture classes
Mixture classes (e.g., pureMixtrure, coefficientMulticomponentMixture),
now have no fvMesh or volScalarField dependence. They operate on
primitive values only. All the fvMesh-dependent functionality has been
moved into the base thermodynamic classes. The 'composition()' access
function has been removed from multi-component thermo models. Functions
that were once provided by composition base classes such as
basicSpecieMixture and basicCombustionMixture are now implemented
directly in the relevant multi-component thermo base class.
2023-07-27 08:39:58 +01:00
87ff44aeb8 tutorials: Simplified dimensionless specification from [0 0 0 0 0 0 0] -> [] 2023-07-26 18:37:57 +01:00
66188fac7a XiFluid, PDRFoam: Updated so that coefficients can be specified without dimensions
All associated combustion tutorials have been simplified using this functionality.
2023-07-26 14:44:10 +01:00
1608401ee6 tutorials/multiphaseEuler/wallBoilingIATE/0/T.gas: Corrected q 2023-07-20 17:39:18 +01:00
6fb82953fa OUForce: Added a write function to write the energy spectrum 2023-07-17 15:15:32 +01:00
cf06107c8b dnsFoam: replaced by the incompressibleFluid solver module with the OUForce fvModel
The bin/dnsFoam redirection script is provided to help users update dnsFoam
cases.
2023-07-16 19:50:57 +01:00
f0ee706fb0 fv::OUForce: New random Ornstein-Uhlenbeck) process force fvModel
Description
    Calculates and applies the random OU (Ornstein-Uhlenbeck) process force to
    the momentum equation for direct numerical simulation of boxes of isotropic
    turbulence.

    The energy spectrum is calculated and written at write-times which is
    particularly useful to test and compare LES SGS models.

Note
    This random OU process force uses a FFT to generate the force field which
    is not currently parallelised.  Also the mesh the FFT is applied to must
    be isotropic and have a power of 2 cells in each direction.

Usage
    Example usage:
    \verbatim
    OUForce
    {
        type    OUForce;

        libs    ("librandomProcesses.so");

        sigma   0.090295;
        alpha   0.81532;
        kUpper  10;
        kLower  7;
    }
    \endverbatim

The tutorials/incompressibleFluid/boxTurb16 tutorial case is an updated version
of the original tutorials/legacy/incompressible/dnsFoam/boxTurb16 case,
demonstrating the use of the OUForce fvModel with the incompressibleFluid solver
module to replicate the behaviour of the legacy dnsFoam solver application.
2023-07-16 19:36:03 +01:00
6fce005097 multiphaseExternalTemperatureFvPatchScalarField: New multiphase version of externalTemperatureFvPatchScalarField
for the multiphaseEuler solver module, replacing the more specific
uniformFixedMultiphaseHeatFluxFvPatchScalarField as it provide equivalent
functionality if the heat-flux q is specified.

multiphaseExternalTemperatureFvPatchScalarField is derived from the refactored
and generalised externalTemperatureFvPatchScalarField, overriding the
getKappa member function to provide the multiphase equivalents of kappa and
other heat transfer properties.  All controls for
multiphaseExternalTemperatureFvPatchScalarField are the same as for
externalTemperatureFvPatchScalarField:

Class
    Foam::externalTemperatureFvPatchScalarField

Description
    This boundary condition applies a heat flux condition to temperature
    on an external wall. Heat flux can be specified in the following ways:

      - Fixed power: requires \c Q
      - Fixed heat flux: requires \c q
      - Fixed heat transfer coefficient: requires \c h and \c Ta

    where:
    \vartable
        Q  | Power Function1 of time [W]
        q  | Heat flux Function1 of time [W/m^2]
        h  | Heat transfer coefficient Function1 of time [W/m^2/K]
        Ta | Ambient temperature Function1 of time [K]
    \endvartable

    Only one of \c Q or \c q may be specified, if \c h and \c Ta are also
    specified the corresponding heat-flux is added.

    If the heat transfer coefficient \c h is specified an optional thin thermal
    layer resistances can also be specified through thicknessLayers and
    kappaLayers entries.

    The patch thermal conductivity \c kappa is obtained from the region
    thermophysicalTransportModel so that this boundary condition can be applied
    directly to either fluid or solid regions.

Usage
    \table
    Property     | Description                 | Required | Default value
    Q            | Power [W]                   | no       |
    q            | Heat flux [W/m^2]           | no       |
    h            | Heat transfer coefficient [W/m^2/K] | no |
    Ta           | Ambient temperature [K]     | if h is given  |
    thicknessLayers | Layer thicknesses [m]    | no |
    kappaLayers  | Layer thermal conductivities [W/m/K] | no |
    relaxation   | Relaxation for the wall temperature | no | 1
    emissivity   | Surface emissivity for radiative flux to ambient | no | 0
    qr           | Name of the radiative field | no | none
    qrRelaxation | Relaxation factor for radiative field | no | 1
    \endtable

    Example of the boundary condition specification:
    \verbatim
    <patchName>
    {
        type            externalTemperature;

        Ta              constant 300.0;
        h               uniform 10.0;
        thicknessLayers (0.1 0.2 0.3 0.4);
        kappaLayers     (1 2 3 4);

        value           $internalField;
    }
    \endverbatim

See also
    Foam::mixedFvPatchScalarField
    Foam::Function1
2023-07-15 21:50:14 +01:00
6931c7c720 tutorials/mesh/refineMesh/sector: Simplification of refineFieldDirs 2023-07-11 12:17:07 +01:00
e7f75df23f coolingSphere tutorial: update for consistency with singleFluidCHT template case 2023-07-07 12:06:50 +01:00
ffcfa32fac tutorials/incompressibleFluid/movingCone: Stop the movement just before the final reversal 2023-06-30 18:20:49 +01:00
a37b646e3d tutorials: Fix cloneMesh paths and use foamRun instead of forwarding scripts 2023-06-29 20:36:26 +01:00
bbb4ee2248 tutorials/multiRegion/film/cylinderVoF: Adjusted film->VoF transfer parameters 2023-06-29 19:38:24 +01:00
568fb8e00e tutorials/multicomponentFluid/SandiaD_LTS: Updated to improve stability and convergence 2023-06-29 18:46:18 +01:00
d297b1c6d1 tutorials/multiphaseEuler/LBend: Changed to use the faceMomentum p-U algorithm
This provides a smooth solution but it is not clear if this is more accurate
than running the cellMomentum p-U algorithm which generates complex transients
in the solution.
2023-06-29 17:06:02 +01:00
6d548ad819 tutorials/multiRegion/film/cylinder: Corrected lagrangian flow rates 2023-06-29 16:34:04 +01:00
a8a1eeec0c tutorials/fluid/iglooWithFridges: Ensure the energy equation solves 2023-06-29 14:53:44 +01:00
9d66e38007 tutorials/fluid/hotRoomComfort: Ensure the energy equations solves 2023-06-29 13:55:23 +01:00
5f0a643e71 tutorials/multicomponentFluid/counterFlowFlame2D: Clean 0/Qdot field 2023-06-29 11:27:29 +01:00