The timeName() function simply returns the dimensionedScalar::name() which holds
the user-time name of the current time and now that timeName() is no longer
virtual the dimensionedScalar::name() can be called directly. The timeName()
function implementation is maintained for backward-compatibility.
Also changed the keyword timeVsFile to the more logical fileVsTime with
backward-compatibility.
Class
Foam::functionObjects::timeActivatedFileUpdate
Description
Performs a file copy/replacement once a specified time has been reached.
Usage
Example usage to update the fvSolution dictionary at 0.1, 0.2 and 0.3s
during the run:
\verbatim
fileUpdate1
{
type timeActivatedFileUpdate;
libs ("libutilityFunctionObjects.so");
writeControl timeStep;
writeInterval 1;
fileToUpdate "$FOAM_CASE/system/fvSolution";
fileVsTime
(
(-1 "$FOAM_CASE/system/fvSolution.0")
(0.10 "$FOAM_CASE/system/fvSolution.10")
(0.20 "$FOAM_CASE/system/fvSolution.20")
(0.35 "$FOAM_CASE/system/fvSolution.35")
);
}
\endverbatim
Resolves bug-report https://bugs.openfoam.org/view.php?id=3938
so that the specification of time-step and write-interval are in user-time,
consistent with the controlDict.
Class
Foam::functionObjects::setTimeStepFunctionObject
Description
Updates the time step as a Function1 of time.
If the case is running with userTime specified in controlDict then the
time-step values returned by the Function1 are assumed to be in user-time
rather than real-time.
Class
Foam::functionObjects::setWriteIntervalFunctionObject
Description
Updates the writeInterval as a Function1 of time.
If the case is running with userTime specified in controlDict then the write
interval values returned by the Function1 are assumed to be in user-time
rather than real-time.
Resolves bug-report https://bugs.openfoam.org/view.php?id=3904
With this change each functionObject provides the list of fields required so
that the postProcess utility can pre-load them before executing the list of
functionObjects. This provides a more convenient interface than using the
-field or -fields command-line options to postProcess which are now redundant.
replacing the virtual functions overridden in engineTime.
Now the userTime conversion function in Time is specified in system/controlDict
such that the solver as well as all pre- and post-processing tools also operate
correctly with the chosen user-time.
For example the user-time and rpm in the tutorials/combustion/XiEngineFoam/kivaTest case are
now specified in system/controlDict:
userTime
{
type engine;
rpm 1500;
}
The default specification is real-time:
userTime
{
type real;
}
but this entry can be omitted as the real-time class is instantiated
automatically if the userTime entry is not present in system/controlDict.
used to check the existence of and open an object file, read and check the
header without constructing the object.
'typeIOobject' operates in an equivalent and consistent manner to 'regIOobject'
but the type information is provided by the template argument rather than via
virtual functions for which the derived object would need to be constructed,
which is the case for 'regIOobject'.
'typeIOobject' replaces the previous separate functions 'typeHeaderOk' and
'typeFilePath' with a single consistent interface.
setTimeStep is now compatible with a 'writeControl adjustableRunTime;'
setting in the systemControlDict. If 'adjustableRunTime' is selected
then the time-step values set by this function object will not be
exactly as specified, but write intervals will be matched exactly.
All function object time adjustment is now done during the execute
methods, so the specific setTimeStep hooks have been removed.
All function objects now re-read as a result of run-time modifications
to the system/controlDict.
Function objects that write log files (via the logFiles class) will now
generate a new postProcessing/<funcName>/<time> directory as a result of
either restart or run-time modification. Log files will therefore never
be overwritten by restart or run-time modification, except for when a
case is restarted at the same time as a previous execution (e.g.,
repeated runs at the start time).
Description
Updates the writeInterval as a Function1 of time.
Examples of function object specification:
\verbatim
setWriteInterval
{
type setWriteInterval;
libs ("libutilityFunctionObjects.so");
writeInterval table
(
(0 0.005)
(0.1 0.005)
(0.1001 0.01)
(0.2 0.01)
(0.2001 0.02)
);
}
\endverbatim
will cause results to be written every 0.005s between 0 and 0.1s, every
0.01s between 0.1 and 0.2s and every 0.02s thereafter.
This avoids attempting to write temporary fields before they have been created.
The executeAtStart can be set to 'yes' in the writeObjects dictionary or the
functions
{
#includeFunc writeObjects(executeAtStart = yes, <field1>, <field2>...)
}
This is a slight modification of the previous commit. All cached
temporary fields are now written to disk with the name enclosed by
"tmp<...>". This still allows for automatically constructed
field names to be read by paraFoam and other post-processing tools. It
also creates a consistent convention for naming all cached temporary
fields that are written to disk.
for example
cacheTemporaryObjects
(
"((1|((1|(1|A(U)))-H(1)))-(1|A(U)))"
);
functions
{
#includeFunc writeObjects(regExp=off, "((1|((1|(1|A(U)))-H(1)))-(1|A(U)))")
}
writes the temporary field with the name
"expr((1|((1|(1|A(U)))-H(1)))-(1|A(U)))" so that it can be read by paraFoam and
other post-processing tools.
Description
Stops the run when the specified clock time in second has been reached
and optionally write results before stopping.
The following actions are supported:
- noWriteNow
- writeNow
- nextWrite (default)
Examples of function object specification:
\verbatim
stop
{
type stopAtClockTime;
libs ("libutilityFunctionObjects.so");
stopTime 10;
action writeNow;
}
\endverbatim
will stop the run at the next write after the file "stop" is created in the
case directory.
Usage
\table
Property | Description | Required | Default value
type | type name: stopAtClockTime | yes |
stopTime | Maximum elapsed time [s] | yes |
action | Action executed | no | nextWrite
\endtable
By default the case stops following the next write but stopping immediately with
or without writing are also options.
The stopAtFile functionObject derived from stopAt stops the run when a file
predefined file is created in the case directory:
Description
Stops the run when the specified file is created in the case directory.
The default name of the trigger file is \c $FOAM_CASE/<name> where \c
<name> is the name of the functionObject entry and the default action is \c
nextWrite.
Currently the following action types are supported:
- noWriteNow
- writeNow
- nextWrite
Examples of function object specification:
\verbatim
stop
{
type stopAtFile;
libs ("libutilityFunctionObjects.so");
}
\endverbatim
will stop the run at the next write after the file "stop" is created in the
case directory.
\verbatim
stop
{
type stopAtFile;
libs ("libutilityFunctionObjects.so");
file "$FOAM_CASE/stop";
action writeNow;
}
\endverbatim
will write the fields and stop the run when the file "stop" is created in
the case directory.
Usage
\table
Property | Description | Required | Default value
type | type name: stopAtFile | yes |
file | Trigger file path name | no | $FOAM_CASE/<name>
action | Action executed | no | nextWrite
\endtable
For example in the new tutorial case:
tutorials/incompressible/pimpleFoam/laminar/pitzDailyPulse
a cosine bell velocity pulse is specified at the inlet by directly defining the
code for it:
inlet
{
type uniformFixedValue;
uniformValue coded;
name pulse;
codeInclude
#{
#include "mathematicalConstants.H"
#};
code
#{
return vector
(
0.5*(1 - cos(constant::mathematical::twoPi*min(x/0.3, 1))),
0,
0
);
#};
}
which is then compiled automatically and linked into the running pimpleFoam
dynamically and executed to set the inlet velocity.
Rather than being tied to the Time class the dlLibraryTable libs is now a global
variable in the Foam namespace which is accessable by any class needing to load
dynamic libraries, in particular argList, Time and codeStream.
When selecting fields with complex automatically generated names it is
cumbersome to escape all the regular expression meta characters and more
convenient to specify the name as a literal string, the new regExp option
provides the ability to switch the regular expression support and defaults to
true for backward compatibility.
For example to cache and write out an intermediate temporary field generated by
the kOmegaSST model:
cacheTemporaryObjects
(
"((interpolate(((1|((1|(1|A(U)))-H(1)))-(1|A(U))))*snGrad(p))*magSf)"
);
functions
{
#includeFunc writeObjects(regExp=off, "((interpolate(((1|((1|(1|A(U)))-H(1)))-(1|A(U))))*snGrad(p))*magSf)")
}
The regExp option can also be specified in a writeObjects dict as
regExp off;
Additionally regular expression support has been added to the includeFunc
argument parsing.
Function1 has been generalised in order to provide functionality
previously provided by some near-duplicate pieces of code.
The interpolationTable and tableReader classes have been removed and
their usage cases replaced by Function1. The interfaces to Function1,
Table and TableFile has been improved for the purpose of using it
internally; i.e., without user input.
Some boundary conditions, fvOptions and function objects which
previously used interpolationTable or other low-level interpolation
classes directly have been changed to use Function1 instead. These
changes may not be backwards compatible. See header documentation for
details.
In addition, the timeVaryingUniformFixedValue boundary condition has
been removed as its functionality is duplicated entirely by
uniformFixedValuePointPatchField.
Currently these deleted function declarations are still in the private section
of the class declarations but will be moved by hand to the public section over
time as this is too complex to automate reliably.
The dynamic code functionality has been generalised so that the names of
the code entries in the specifying dictionary can be set by the caller.
This means that functions which utilise dynamic code but use different
entry names (e.g., codedFunctionObject uses codeExecute, codeEnd,
etc..., instead of code) now function correctly. The differently named
entries now form part of the library hash, and re-building triggers
appropriately as they are modified.
The logic governing function objects' ability to change the time-step
has been modified so that it is compatible with the time-step adjustment
done in the Time class. The behaviour has been split into a method which
sets the step directly, and another which moidifies the time until the
next write operation (i.e., the time that the solver "aims" for).
This fixes an issue where the adjustments in Time and the function
objects interfere and cause the time step to decrease exponentially down
to machine precision. It also means that the set-time-step function
object now does not break the adjustable run-time setting.
This resolves bug report https://bugs.openfoam.org/view.php?id=2820
and optionally the CPU and clock times per time step.
Example of function object specification:
time
{
type time;
libs ("libutilityFunctionObjects.so");
writeControl timeStep;
writeInterval 1;
perTimeStep no;
}
Adding
#includeFunc time
to the functions list in the controlDict of the motorBike tutorial generates
0 1.190000e+00 1
1 1.640000e+00 1
2 1.940000e+00 2
Enabling the optional writing of the CPU and clock time per time step is
straight forward:
#includeFunc time(perTimeStep=yes)