Commit Graph

96 Commits

Author SHA1 Message Date
f2cc03bf8d MULES: Non-uniform limiting and additional form of limit sum
MULES and CMULES have been extended so that the limits can be supplied
as fields. These arguments are templated so that zeroField, oneField or
UniformField<scalar> can be used in place of a scalar value with no
additional overhead. The flux argument has been removed from the
unlimited CMULES correct functions in order to make this templating
possible.

An additional form of limit sum has also been added to MULES. This
limits the flux sum by ofsetting in proportion to the phase fraction,
rather than by reducing the magnitude of the fluxes with the same sign
as the imbalance. The new procedure makes it possible to limit the flux
sum in the presence of constraints without encountering a divide by
zero.
2018-03-22 16:55:36 +00:00
1073607cb0 Corrected spelling and typo's in comments
Resolves bug report https://bugs.openfoam.org/view.php?id=2845
2018-03-05 20:14:28 +00:00
fe1fade8cb Corrected spelling in comments
Resolves bug-report https://bugs.openfoam.org/view.php?id=2844
2018-02-13 20:39:56 +00:00
8cbde12c80 directFieldMapper: Corrected constructor name
Note this class is not currently used in OpenFOAM

Resolves bug-report https://bugs.openfoam.org/view.php?id=2829
2018-02-07 15:57:50 +00:00
fc2b2d0c05 OpenFOAM: Rationalized the naming of scalar limits
In early versions of OpenFOAM the scalar limits were simple macro replacements and the
names were capitalized to indicate this.  The scalar limits are now static
constants which is a huge improvement on the use of macros and for consistency
the names have been changed to camel-case to indicate this and improve
readability of the code:

    GREAT -> great
    ROOTGREAT -> rootGreat
    VGREAT -> vGreat
    ROOTVGREAT -> rootVGreat
    SMALL -> small
    ROOTSMALL -> rootSmall
    VSMALL -> vSmall
    ROOTVSMALL -> rootVSmall

The original capitalized are still currently supported but their use is
deprecated.
2018-01-25 09:46:37 +00:00
018adc16c9 Corrected file conditional compilation macro names to be consistency with the file names
Scripts contributed by Bruno Santos
Resolves request https://bugs.openfoam.org/view.php?id=2692#c8735
2017-09-12 13:39:48 +01:00
11e4a71463 Function1: made the clone function pure virtual
Avoids potential problems with derived classes which do not define a clone function.
2017-07-13 23:24:14 +01:00
7c301dbff4 Parallel IO: New collated file format
When an OpenFOAM simulation runs in parallel, the data for decomposed fields and
mesh(es) has historically been stored in multiple files within separate
directories for each processor.  Processor directories are named 'processorN',
where N is the processor number.

This commit introduces an alternative "collated" file format where the data for
each decomposed field (and mesh) is collated into a single file, which is
written and read on the master processor.  The files are stored in a single
directory named 'processors'.

The new format produces significantly fewer files - one per field, instead of N
per field.  For large parallel cases, this avoids the restriction on the number
of open files imposed by the operating system limits.

The file writing can be threaded allowing the simulation to continue running
while the data is being written to file.  NFS (Network File System) is not
needed when using the the collated format and additionally, there is an option
to run without NFS with the original uncollated approach, known as
"masterUncollated".

The controls for the file handling are in the OptimisationSwitches of
etc/controlDict:

OptimisationSwitches
{
    ...

    //- Parallel IO file handler
    //  uncollated (default), collated or masterUncollated
    fileHandler uncollated;

    //- collated: thread buffer size for queued file writes.
    //  If set to 0 or not sufficient for the file size threading is not used.
    //  Default: 2e9
    maxThreadFileBufferSize 2e9;

    //- masterUncollated: non-blocking buffer size.
    //  If the file exceeds this buffer size scheduled transfer is used.
    //  Default: 2e9
    maxMasterFileBufferSize 2e9;
}

When using the collated file handling, memory is allocated for the data in the
thread.  maxThreadFileBufferSize sets the maximum size of memory in bytes that
is allocated.  If the data exceeds this size, the write does not use threading.

When using the masterUncollated file handling, non-blocking MPI communication
requires a sufficiently large memory buffer on the master node.
maxMasterFileBufferSize sets the maximum size in bytes of the buffer.  If the
data exceeds this size, the system uses scheduled communication.

The installation defaults for the fileHandler choice, maxThreadFileBufferSize
and maxMasterFileBufferSize (set in etc/controlDict) can be over-ridden within
the case controlDict file, like other parameters.  Additionally the fileHandler
can be set by:
- the "-fileHandler" command line argument;
- a FOAM_FILEHANDLER environment variable.

A foamFormatConvert utility allows users to convert files between the collated
and uncollated formats, e.g.
    mpirun -np 2 foamFormatConvert -parallel -fileHandler uncollated

An example case demonstrating the file handling methods is provided in:
$FOAM_TUTORIALS/IO/fileHandling

The work was undertaken by Mattijs Janssens, in collaboration with Henry Weller.
2017-07-07 11:39:56 +01:00
5caadae42b reactingMultiphaseEulerFoam: Limited phase-fractions
for consistency with reactingTwoPhaseEulerFoam and to ensure correct operation
of models requiring formal boundedness of phase-fractions.

Resolves bug-report https://bugs.openfoam.org/view.php?id=2589
2017-06-26 16:24:57 +01:00
7bdbab7f4e Rationalize the "pos" function
"pos" now returns 1 if the argument is greater than 0, otherwise it returns 0.
This is consistent with the common mathematical definition of the "pos" function:

https://en.wikipedia.org/wiki/Sign_(mathematics)

However the previous implementation in which 1 was also returned for a 0
argument is useful in many situations so the "pos0" has been added which returns
1 if the argument is greater or equal to 0.  Additionally the "neg0" has been
added which returns 1 if if the argument is less than or equal to 0.
2017-06-22 14:32:18 +01:00
45ecfbde86 DimensionedField: Correct database registration of fields created with new names 2017-06-18 20:35:20 +01:00
944fdd07ab vectorField: vector2DField: Added zip functions for stitching together a
vectorField or vector2DField from scalarField components. To do this
properly and have it work for field-type combinations would require some
new field function macros.
2017-05-22 12:58:25 +01:00
24b7901d09 FieldFieldFunctionsM: Corrected macro names and order for binary functions 2017-04-12 14:33:45 +01:00
1e6c9a0a54 Updated UPstream::commsTypes to use the C++11 enum class 2017-03-10 19:54:55 +00:00
0f4fae169a GeometricField: corrected assignment to tmp which wraps a non-tmp 2017-02-22 13:20:49 +00:00
1c8a0bdcb3 compressibleInterFoam: Completed LTS and semi-implicit MULES support
Now the interFoam and compressibleInterFoam families of solvers use the same
alphaEqn formulation and supporting all of the MULES options without
code-duplication.

The semi-implicit MULES support allows running with significantly larger
time-steps but this does reduce the interface sharpness.
2017-02-09 17:31:57 +00:00
63dee8f2da Updates for clang++-3.9 2017-01-18 18:12:45 +00:00
51a0663cd1 pointConstraint: Added constrainDisplacement
which directly applies the constraint to the displacement without
external tensor ops.

Patch contributed by Mattijs Janssens
2016-11-04 17:13:04 +00:00
cc4c2989c3 fieldTypes: Using C++11 __VA_ARGS__ functionality created the FOR_ALL_FIELD_TYPES macro
This supports the abstraction of the set of fields from the field code
generation macros making it easier to change the set of fields supported
by OpenFOAM.  This functionality is demonstrated in the updated
fvPatchFields macros and will be applied to the rest of the field code
generation macros in the future.
2016-10-03 09:08:01 +01:00
a316584c72 Field: Added constructor from UIndirectList
Patch contributed by Mattijs Janssens
2016-09-30 18:48:26 +01:00
a27eb13ad6 decomposePar: Corrected construction of cloud for processors
Resolves bug-report http://bugs.openfoam.org/view.php?id=2239
2016-09-21 17:19:58 +01:00
3d742e78a9 OpenFOAM/containers: Standardized assignment docs 2016-08-12 10:00:48 +01:00
7656c076c8 C++11: Replaced the C NULL with the safer C++11 nullptr
Requires gcc version 4.7 or higher
2016-08-05 17:19:38 +01:00
adc816a85d timeVaryingMappedFixedValue: Reinstated support for AverageField 2016-07-01 10:26:20 +01:00
8a5304edf6 Doxygen documentation: Standardized the 'See also' heading 2016-06-17 17:31:34 +01:00
8b672f0f1a postProcessing: Replaced 'foamCalc' and the 'postCalc' utilities
with the more general and flexible 'postProcess' utility and '-postProcess' solver option

Rationale
---------

Both the 'postProcess' utility and '-postProcess' solver option use the
same extensive set of functionObjects available for data-processing
during the run avoiding the substantial code duplication necessary for
the 'foamCalc' and 'postCalc' utilities and simplifying maintenance.
Additionally consistency is guaranteed between solver data processing
and post-processing.

The functionObjects have been substantially re-written and generalized
to simplify development and encourage contribution.

Configuration
-------------

An extensive set of simple functionObject configuration files are
provided in

OpenFOAM-dev/etc/caseDicts/postProcessing

and more will be added in the future.  These can either be copied into
'<case>/system' directory and included into the 'controlDict.functions'
sub-dictionary or included directly from 'etc/caseDicts/postProcessing'
using the '#includeEtc' directive or the new and more convenient
'#includeFunc' directive which searches the
'<etc>/caseDicts/postProcessing' directories for the selected
functionObject, e.g.

functions
{
    #includeFunc Q
    #includeFunc Lambda2
}

'#includeFunc' first searches the '<case>/system' directory in case
there is a local configuration.

Description of #includeFunc
---------------------------

    Specify a functionObject dictionary file to include, expects the
    functionObject name to follow (without quotes).

    Search for functionObject dictionary file in
    user/group/shipped directories.
    The search scheme allows for version-specific and
    version-independent files using the following hierarchy:
    - \b user settings:
      - ~/.OpenFOAM/\<VERSION\>/caseDicts/postProcessing
      - ~/.OpenFOAM/caseDicts/postProcessing
    - \b group (site) settings (when $WM_PROJECT_SITE is set):
      - $WM_PROJECT_SITE/\<VERSION\>/caseDicts/postProcessing
      - $WM_PROJECT_SITE/caseDicts/postProcessing
    - \b group (site) settings (when $WM_PROJECT_SITE is not set):
      - $WM_PROJECT_INST_DIR/site/\<VERSION\>/caseDicts/postProcessing
      - $WM_PROJECT_INST_DIR/site/caseDicts/postProcessing
    - \b other (shipped) settings:
      - $WM_PROJECT_DIR/etc/caseDicts/postProcessing

    An example of the \c \#includeFunc directive:
    \verbatim
        #includeFunc <funcName>
    \endverbatim

postProcess
-----------

The 'postProcess' utility and '-postProcess' solver option provide the
same set of controls to execute functionObjects after the run either by
reading a specified set of fields to process in the case of
'postProcess' or by reading all fields and models required to start the
run in the case of '-postProcess' for each selected time:

postProcess -help

Usage: postProcess [OPTIONS]
options:
  -case <dir>       specify alternate case directory, default is the cwd
  -constant         include the 'constant/' dir in the times list
  -dict <file>      read control dictionary from specified location
  -field <name>     specify the name of the field to be processed, e.g. U
  -fields <list>    specify a list of fields to be processed, e.g. '(U T p)' -
                    regular expressions not currently supported
  -func <name>      specify the name of the functionObject to execute, e.g. Q
  -funcs <list>     specify the names of the functionObjects to execute, e.g.
                    '(Q div(U))'
  -latestTime       select the latest time
  -newTimes         select the new times
  -noFunctionObjects
                    do not execute functionObjects
  -noZero           exclude the '0/' dir from the times list, has precedence
                    over the -withZero option
  -parallel         run in parallel
  -region <name>    specify alternative mesh region
  -roots <(dir1 .. dirN)>
                    slave root directories for distributed running
  -time <ranges>    comma-separated time ranges - eg, ':10,20,40:70,1000:'
  -srcDoc           display source code in browser
  -doc              display application documentation in browser
  -help             print the usage

 pimpleFoam -postProcess -help

Usage: pimpleFoam [OPTIONS]
options:
  -case <dir>       specify alternate case directory, default is the cwd
  -constant         include the 'constant/' dir in the times list
  -dict <file>      read control dictionary from specified location
  -field <name>     specify the name of the field to be processed, e.g. U
  -fields <list>    specify a list of fields to be processed, e.g. '(U T p)' -
                    regular expressions not currently supported
  -func <name>      specify the name of the functionObject to execute, e.g. Q
  -funcs <list>     specify the names of the functionObjects to execute, e.g.
                    '(Q div(U))'
  -latestTime       select the latest time
  -newTimes         select the new times
  -noFunctionObjects
                    do not execute functionObjects
  -noZero           exclude the '0/' dir from the times list, has precedence
                    over the -withZero option
  -parallel         run in parallel
  -postProcess      Execute functionObjects only
  -region <name>    specify alternative mesh region
  -roots <(dir1 .. dirN)>
                    slave root directories for distributed running
  -time <ranges>    comma-separated time ranges - eg, ':10,20,40:70,1000:'
  -srcDoc           display source code in browser
  -doc              display application documentation in browser
  -help             print the usage

The functionObjects to execute may be specified on the command-line
using the '-func' option for a single functionObject or '-funcs' for a
list, e.g.

postProcess -func Q
postProcess -funcs '(div(U) div(phi))'

In the case of 'Q' the default field to process is 'U' which is
specified in and read from the configuration file but this may be
overridden thus:

postProcess -func 'Q(Ua)'

as is done in the example above to calculate the two forms of the divergence of
the velocity field.  Additional fields which the functionObjects may depend on
can be specified using the '-field' or '-fields' options.

The 'postProcess' utility can only be used to execute functionObjects which
process fields present in the time directories.  However, functionObjects which
depend on fields obtained from models, e.g. properties derived from turbulence
models can be executed using the '-postProcess' of the appropriate solver, e.g.

pisoFoam -postProcess -func PecletNo

or

sonicFoam -postProcess -func MachNo

In this case all required fields will have already been read so the '-field' or
'-fields' options are not be needed.

Henry G. Weller
CFD Direct Ltd.
2016-05-28 18:58:48 +01:00
f1a5196adf ReadFields: Added functions to read selected fields and store in the objectRegistry 2016-05-26 22:59:08 +01:00
39cf529866 DimensionedScalarField, GeometricScalarField: Added more rigorous dimension-checking for 'pow' functions 2016-05-23 12:04:02 +01:00
2d1573d2ed transformGeometricField: Use '.ref()' to obtain non-const access to a temporary 2016-05-22 14:29:59 +01:00
08e22d3af0 Updated code comments 2016-05-19 09:40:17 +01:00
f2331a8587 dynamicCode: Renamed 'redirectType' to 'name' to clarify the purpose
of the entry which is to provide the name of the generated class.

'redirectType' is supported for backward-compatibility.
2016-05-18 23:10:42 +01:00
4500971827 Further standardization of loop index naming: pointI -> pointi, patchI -> patchi 2016-05-18 21:20:42 +01:00
1441f8cab0 Patches contributed by Mattijs Janssens:
splitMeshRegions: handle flipping of faces for surface fields

subsetMesh: subset dimensionedFields

decomposePar: use run-time selection of decomposition constraints. Used to
    keep cells on particular processors. See the decomposeParDict in

$FOAM_UTILITIES/parallel/decomposePar:
  - preserveBaffles: keep baffle faces on same processor
  - preserveFaceZones: keep faceZones owner and neighbour on same processor
  - preservePatches: keep owner and neighbour on same processor. Note: not
    suitable for cyclicAMI since these are not coupled on the patch level
  - singleProcessorFaceSets: keep complete faceSet on a single processor
  - refinementHistory: keep cells originating from a single cell on the
    same processor.

decomposePar: clean up decomposition of refinement data from snappyHexMesh

reconstructPar: reconstruct refinement data (refineHexMesh, snappyHexMesh)

reconstructParMesh: reconstruct refinement data (refineHexMesh, snappyHexMesh)

redistributePar:
  - corrected mapping surfaceFields
  - adding processor patches in order consistent with decomposePar

argList: check that slaves are running same version as master

fvMeshSubset: move to dynamicMesh library

fvMeshDistribute:
  - support for mapping dimensionedFields
  - corrected mapping of surfaceFields

parallel routines: allow parallel running on single processor

Field: support for
  - distributed mapping
  - mapping with flipping

mapDistribute: support for flipping

AMIInterpolation: avoid constructing localPoints
2016-05-15 16:36:48 +01:00
3cd9b4f5d7 Change field loop index from "fieldI" to "fieldi" 2016-05-02 18:20:48 +01:00
4da46e7cd9 Updated headers 2016-04-30 21:53:19 +01:00
fe43b80536 GeometricField: Renamed internalField() -> primitiveField() and dimensionedInternalField() -> internalField()
These new names are more consistent and logical because:

primitiveField():
primitiveFieldRef():
    Provides low-level access to the Field<Type> (primitive field)
    without dimension or mesh-consistency checking.  This should only be
    used in the low-level functions where dimensional consistency is
    ensured by careful programming and computational efficiency is
    paramount.

internalField():
internalFieldRef():
    Provides access to the DimensionedField<Type, GeoMesh> of values on
    the internal mesh-type for which the GeometricField is defined and
    supports dimension and checking and mesh-consistency checking.
2016-04-30 21:40:09 +01:00
68fb9a2bf9 GeometricField::dimensionedInteralFieldRef() -> GeometricField::ref()
In order to simplify expressions involving dimensioned internal field it
is preferable to use a simpler access convention.  Given that
GeometricField is derived from DimensionedField it is simply a matter of
de-referencing this underlying type unlike the boundary field which is
peripheral information.  For consistency with the new convention in
"tmp"  "dimensionedInteralFieldRef()" has been renamed "ref()".
2016-04-30 18:43:51 +01:00
e1e996746b GeometricField::internalField() -> GeometricField::internalFieldRef()
Non-const access to the internal field now obtained from a specifically
named access function consistent with the new names for non-canst access
to the boundary field boundaryFieldRef() and dimensioned internal field
dimensionedInternalFieldRef().

See also commit a4e2afa4b3
2016-04-30 14:25:21 +01:00
75ea76187b GeometricField::GeometricBoundaryField -> GeometricField::Boundary
When the GeometricBoundaryField template class was originally written it
was a separate class in the Foam namespace rather than a sub-class of
GeometricField as it is now.  Without loss of clarity and simplifying
code which access the boundary field of GeometricFields it is better
that GeometricBoundaryField be renamed Boundary for consistency with the
new naming convention for the type of the dimensioned internal field:
Internal, see commit a25a449c9e

This is a very simple text substitution change which can be applied to
any code which compiles with the OpenFOAM-dev libraries.
2016-04-28 07:22:02 +01:00
a25a449c9e GeometricField: Rationalized and simplified access to the dimensioned internal field
Given that the type of the dimensioned internal field is encapsulated in
the GeometricField class the name need not include "Field"; the type
name is "Internal" so

volScalarField::DimensionedInternalField -> volScalarField::Internal

In addition to the ".dimensionedInternalField()" access function the
simpler "()" de-reference operator is also provided to greatly simplify
FV equation source term expressions which need not evaluate boundary
conditions.  To demonstrate this kEpsilon.C has been updated to use
dimensioned internal field expressions in the k and epsilon equation
source terms.
2016-04-27 21:32:45 +01:00
f6767301a1 geometricOneField: Added support for DimensionedInternalField 2016-04-27 12:46:38 +01:00
49adef644f DimensionedField: Corrected (currently unused) constructor from tmp 2016-04-27 12:45:55 +01:00
f0d25904e4 GeometricField, volFields: Added experimental member function ".v()" and perfix operator "~"
both of which return the dimensionedInternalField for volFields only.

These will be useful in FV equation source term expressions which need
not evaluate boundary conditions.
2016-04-26 20:45:53 +01:00
cb9732204d Replaced StaticAssert with the C++11 equivalent static_assert 2016-04-26 20:44:55 +01:00
6fd4ce6cc3 Revert "src/postProcessing/functionObjects/field/Make/files: Corrected"
This reverts commit 73fe45cd27.
2016-04-26 20:33:45 +01:00
73fe45cd27 src/postProcessing/functionObjects/field/Make/files: Corrected 2016-04-26 20:31:58 +01:00
97f473ff0f GeometricField::dimensionedInternalField() -> GeometricField::dimensionedInternalFieldRef()
See also commit a4e2afa4b3
2016-04-26 16:29:43 +01:00
a4e2afa4b3 Completed boundaryField() -> boundaryFieldRef()
Resolves bug-report http://www.openfoam.org/mantisbt/view.php?id=1938

Because C++ does not support overloading based on the return-type there
is a problem defining both const and non-const member functions which
are resolved based on the const-ness of the object for which they are
called rather than the intent of the programmer declared via the
const-ness of the returned type.  The issue for the "boundaryField()"
member function is that the non-const version increments the
event-counter and checks the state of the stored old-time fields in case
the returned value is altered whereas the const version has no
side-effects and simply returns the reference.  If the the non-const
function is called within the patch-loop the event-counter may overflow.
To resolve this it in necessary to avoid calling the non-const form of
"boundaryField()" if the results is not altered and cache the reference
outside the patch-loop when mutation of the patch fields is needed.

The most straight forward way of resolving this problem is to name the
const and non-const forms of the member functions differently e.g. the
non-const form could be named:

    mutableBoundaryField()
    mutBoundaryField()
    nonConstBoundaryField()
    boundaryFieldRef()

Given that in C++ a reference is non-const unless specified as const:
"T&" vs "const T&" the logical convention would be

    boundaryFieldRef()
    boundaryFieldConstRef()

and given that the const form which is more commonly used is it could
simply be named "boundaryField()" then the logical convention is

    GeometricBoundaryField& boundaryFieldRef();

    inline const GeometricBoundaryField& boundaryField() const;

This is also consistent with the new "tmp" class for which non-const
access to the stored object is obtained using the ".ref()" member function.

This new convention for non-const access to the components of
GeometricField will be applied to "dimensionedInternalField()" and "internalField()" in the
future, i.e. "dimensionedInternalFieldRef()" and "internalFieldRef()".
2016-04-25 16:16:05 +01:00
8c4f6b8fcb Standardized cell, patch and face loop index names 2016-04-25 10:28:32 +01:00
c25b48a747 GeometricField: New non-const access function boundaryFieldRef()
There is a need to specify const or non-const access to a non-const
object which is not currently possible with the "boundaryField()" access
function the const-ness of the return of which is defined by the
const-ness of the object for which it is called.  For consistency with
the latest "tmp" storage class in which non-const access is obtained
with the "ref()" function it is proposed to replace the non-const form
of "boundaryField()" with "boundaryFieldRef()".

Thanks to Mattijs Janssens for starting the process of migration to
"boundaryFieldRef()" and providing a patch for the OpenFOAM and
finiteVolume libraries.
2016-04-23 23:07:28 +01:00