Currently these deleted function declarations are still in the private section
of the class declarations but will be moved by hand to the public section over
time as this is too complex to automate reliably.
Replaced all uses of complex Xfer class with C++11 "move" constructors and
assignment operators. Removed the now redundant Xfer class.
This substantial changes improves consistency between OpenFOAM and the C++11 STL
containers and algorithms, reduces memory allocation and copy overhead when
returning containers from functions and simplifies maintenance of the core
libraries significantly.
The base dynamicFvMesh now reads and stores the dynamicMeshDict and motion
solver receive it as a constructor argument.
Also rationalised the motionSolver diffusivity classes in which storing the
faceDiffusivity field provided no advantage; now it is created and returned on
demand.
The sub-loops of the solution control are now named more consistently,
with ambiguously named methods such as finalIter replaced with ones
like finalPimpleIter, so that it is clear which loop they represent.
In addition, the final logic has been improved so that it restores state
after a sub-iteration, and so that sub-iterations can be used on their
own without an outer iteration in effect. Previously, if the
non-orthogonal loop were used outside of a pimple/piso iteration, the
final iteration would not execute with final settings.
Registration occurs when the temporary field is transferred to a non-temporary
field via a constructor or if explicitly transferred to the database via the
regIOobject "store" methods.
With the -noFields option the mesh is subset but the fields are not changed.
This is useful when the field fields have been created to correspond to the mesh
after the mesh subset.
This method waits until all the threads have completed IO operations and
then clears any cached information about the files on disk. This
replaces the deactivation of threading by means of zeroing the buffer
size when writing and reading of a file happen in sequence. It also
allows paraFoam to update the list of available times.
Patch contributed by Mattijs Janssens
Resolves bug report https://bugs.openfoam.org/view.php?id=2962
Changed the default region name from "domain" to "region" for consistency with
the rest of OpenFOAM.
Changed the multiple default region numbering to start from 1 rather than 0
because the top-level mesh in the case directory is always named "region0".
Changed the default region numbering to only relate to the default named regions
and does not increment for explicitly named regions. This avoids a naming
dependency on the default and named region order.
Added new option "-defaultRegionName <name>"
to specify the base name of the unspecified regions, defaults to "region"
A new constraint patch has been added which permits AMI coupling in
cyclic geometries. The coupling is repeated with different multiples of
the cyclic transformation in order to achieve a full correspondence.
This allows, for example, a cylindrical AMI interface to be used in a
sector of a rotational geometry.
The patch is used in a similar manner to cyclicAMI, except that it has
an additional entry, "transformPatch". This entry must name a coupled
patch. The transformation used to repeat the AMI coupling is taken from
this patch. For example, in system/blockMeshDict:
boundary
(
cyclic1
{
type cyclic;
neighbourPatch cyclic2;
faces ( ... );
}
cyclic2
{
type cyclic;
neighbourPatch cyclic1;
faces ( ... );
}
cyclicRepeatAMI1
{
type cyclicRepeatAMI;
neighbourPatch cyclicRepeatAM2;
transformPatch cyclic1;
faces ( ... );
}
cyclicRepeatAMI2
{
type cyclicRepeatAMI;
neighbourPatch cyclicRepeatAMI1;
transformPatch cyclic1;
faces ( ... );
}
// other patches ...
);
In this example, the transformation between cyclic1 and cyclic2 is used
to define the repetition used by the two cyclicRepeatAMI patches.
Whether cyclic1 or cyclic2 is listed as the transform patch is not
important.
A tutorial, incompressible/pimpleFoam/RAS/impeller, has been added to
demonstrate the functionality. This contains two repeating AMI pairs;
one cylindrical and one planar.
A significant amount of maintenance has been carried out on the AMI and
ACMI patches as part of this work. The AMI methods now return
dimensionless weights by default, which prevents ambiguity over the
units of the weight field during construction. Large amounts of
duplicate code have also been removed by deriving ACMI classes from
their AMI equivalents. The reporting and writing of AMI weights has also
been unified.
This work was supported by Dr Victoria Suponitsky, at General Fusion
Without -fields specified mergeOrSplitBaffles now manipulates the mesh only and
with the -fields option also updates the fields corresponding to the mesh change.
In early versions of OpenFOAM the scalar limits were simple macro replacements and the
names were capitalized to indicate this. The scalar limits are now static
constants which is a huge improvement on the use of macros and for consistency
the names have been changed to camel-case to indicate this and improve
readability of the code:
GREAT -> great
ROOTGREAT -> rootGreat
VGREAT -> vGreat
ROOTVGREAT -> rootVGreat
SMALL -> small
ROOTSMALL -> rootSmall
VSMALL -> vSmall
ROOTVSMALL -> rootVSmall
The original capitalized are still currently supported but their use is
deprecated.
The new optional switch 'writeCyclicMatch' can be set to 'true' to enable the writing of
the cyclic match OBJ files; defaults to 'false'.
Patch contributed by Bruno Santos
Resolves patch request https://bugs.openfoam.org/view.php?id=2685
When an OpenFOAM simulation runs in parallel, the data for decomposed fields and
mesh(es) has historically been stored in multiple files within separate
directories for each processor. Processor directories are named 'processorN',
where N is the processor number.
This commit introduces an alternative "collated" file format where the data for
each decomposed field (and mesh) is collated into a single file, which is
written and read on the master processor. The files are stored in a single
directory named 'processors'.
The new format produces significantly fewer files - one per field, instead of N
per field. For large parallel cases, this avoids the restriction on the number
of open files imposed by the operating system limits.
The file writing can be threaded allowing the simulation to continue running
while the data is being written to file. NFS (Network File System) is not
needed when using the the collated format and additionally, there is an option
to run without NFS with the original uncollated approach, known as
"masterUncollated".
The controls for the file handling are in the OptimisationSwitches of
etc/controlDict:
OptimisationSwitches
{
...
//- Parallel IO file handler
// uncollated (default), collated or masterUncollated
fileHandler uncollated;
//- collated: thread buffer size for queued file writes.
// If set to 0 or not sufficient for the file size threading is not used.
// Default: 2e9
maxThreadFileBufferSize 2e9;
//- masterUncollated: non-blocking buffer size.
// If the file exceeds this buffer size scheduled transfer is used.
// Default: 2e9
maxMasterFileBufferSize 2e9;
}
When using the collated file handling, memory is allocated for the data in the
thread. maxThreadFileBufferSize sets the maximum size of memory in bytes that
is allocated. If the data exceeds this size, the write does not use threading.
When using the masterUncollated file handling, non-blocking MPI communication
requires a sufficiently large memory buffer on the master node.
maxMasterFileBufferSize sets the maximum size in bytes of the buffer. If the
data exceeds this size, the system uses scheduled communication.
The installation defaults for the fileHandler choice, maxThreadFileBufferSize
and maxMasterFileBufferSize (set in etc/controlDict) can be over-ridden within
the case controlDict file, like other parameters. Additionally the fileHandler
can be set by:
- the "-fileHandler" command line argument;
- a FOAM_FILEHANDLER environment variable.
A foamFormatConvert utility allows users to convert files between the collated
and uncollated formats, e.g.
mpirun -np 2 foamFormatConvert -parallel -fileHandler uncollated
An example case demonstrating the file handling methods is provided in:
$FOAM_TUTORIALS/IO/fileHandling
The work was undertaken by Mattijs Janssens, in collaboration with Henry Weller.
cellZones and pointZones can now be created in one action without the
need to first create a cellSet or pointSet and converting that to the
corresponding zone, e.g.
actions
(
// Example: create cellZone from a box region
{
name c0;
type cellZoneSet;
action new;
source boxToCell;
sourceInfo
{
box (0.04 0 0)(0.06 100 100);
}
}
);
- the checking for point-connected multiple-regions now also writes the
conflicting points to a pointSet
- with the -writeSets option it now also reconstructs & writes pointSets