A new optional "slash" scoping syntax is now provided which is more intuitive
than the current "dot" syntax as it corresponds to the common directory/file
access syntax used in UNIX, and avoids limitations of the "dot" (see below)
e.g.
internalField 3.4;
active
{
type fixedValue;
value.air $internalField;
}
inactive
{
type anotherFixedValue;
value $../active/value.air;
anotherValue $:active/value.air;
sub
{
value $../../active/value.air;
anotherValue $:active/value.air;
}
}
"U.*"
{
solver GAMG;
}
e.air
{
// This does expand
$U.air;
}
"#inputSyntax slash;" selects the new "slash" syntax.
"../" refers to the parent directory.
":" refers to the top-level directory.
The corresponding dictionary using the current "dot" syntax is
internalField 3.4;
active
{
type fixedValue;
value.air $internalField;
}
inactive
{
type anotherFixedValue;
value $..active.value.air;
anotherValue $:active.value.air;
sub
{
value $...active.value.air;
anotherValue $:active.value.air;
}
}
"U.*"
{
solver GAMG;
}
e.air
{
// This doesn't expand
$U.air;
}
Note that the "$U.air" expansion does not work in this case due to the
interference between the use of '.' for scoping and phase-name.
This is a fundamental problem which prompted the development of the new more
intuitive and flexible "slash" syntax.
The new syntax also allows a for planned future development to access entries
in directories in other files, e.g.
active
{
type fixedValue;
value.air $FOAM_CASE/internalFieldValues/value.air;
}
or
active
{
type fixedValue;
value.air :../internalFieldValues/value.air;
}
Currently these deleted function declarations are still in the private section
of the class declarations but will be moved by hand to the public section over
time as this is too complex to automate reliably.
With the selection of the Boussinesq equation of state the general buoyancy
solvers buoyantSimpleFoam and buoyantPimpleFoam can be used instead of the
specialised Boussinesq solvers avoiding the need for special implementation of
thermal and pressure boundary conditions and providing support for radiation and
fvOptions which would not have been feasible or practical in the Boussinesq
solvers.
Other incompressible equations of state are also supported; for most gaseous
problems the incompressiblePerfectGas equation of state is likely to be more
accurate than the Boussinesq equation of state.
The buoyantBoussinesq[SP]impleFoam tutorials have been updated and moved to the
corresponding buoyant[SP]impleFoam directories.
The writeEntry form is now defined and used consistently throughout OpenFOAM
making it easier to use and extend, particularly to support binary IO of complex
dictionary entries.
This is like the scalarTrasport function except that the transported
scalar is confined to a single phase of a multiphase simulation. In
addition to the usual specification for the scalarTransport function
(i.e., a field, schemes and solution parameters), the user needs to
specify the phase-flux or a pressure field which can be used to generate
it.
Example usage for interFoam:
phaseScalarTransport1
{
type phaseScalarTransport;
libs ("libsolverFunctionObjects.so");
field s.water;
p p_rgh;
}
Example usage for reactingTwoPhaseEulerFoam:
phaseScalarTransport1
{
type phaseScalarTransport;
libs ("libsolverFunctionObjects.so");
field s.water;
alphaPhi alphaRhoPhi.water;
rho thermo:rho.water;
}
The function will write out both the per-unit-phase field that is solved
for (s.water in the above examples) and also the mixture-total field
(alphaS.water), which is often more convenient for post-processing.
The dynamic code functionality has been generalised so that the names of
the code entries in the specifying dictionary can be set by the caller.
This means that functions which utilise dynamic code but use different
entry names (e.g., codedFunctionObject uses codeExecute, codeEnd,
etc..., instead of code) now function correctly. The differently named
entries now form part of the library hash, and re-building triggers
appropriately as they are modified.
to rationalise the structure and class names to avoid the need for the confusing
addNamedToRunTimeSelectionTable and use instead use the standard
addToRunTimeSelectionTable to populate the run-time selection table.
The construction of some patch fields has been corrected so that the
patchType setting always propagates on mapping, IO, clone, etc...
Dictionary and mapping-based patch field constructors now call the
corresponding constructor from the base class, regardless of whether
dictionary settings or mapping are actually needed.
A "mappingRequired" flag has been added to some of the base constructors
in order to prevent unecessary mapping of field data and retain the
previous level of optimisation.
Resolves bug report https://bugs.openfoam.org/view.php?id=3144
With the inclusion of boundary layer modelling in the gas, the
separation of wave perturbation from and mean flow became less useful,
and potentially prevents further extension to support similar boundary
layer modelling in the liquid.
The mean velocity entry, UMean, is now needed in the
constant/waveProperties file rather than in the waveVelocity boundary
condition.
In order to increase the flexibility of the wave library, the mean flow
handling has been removed from the waveSuperposition class. This makes
waveSuperposition work purely in terms of perturbations to a mean
background flow.
The input has also been split, with waves now defined as region-wide
settings in constant/waveProperties. The mean flow parameters are sill
defined by the boundary conditions.
The new format of the velocity boundary is much simpler. Only a mean
flow velocity is required.
In 0/U:
boundaryField
{
inlet
{
type waveVelocity;
UMean (2 0 0);
}
// etc ...
}
Other wave boundary conditions have not changed.
The constant/waveProperties file contains the wave model selections and
the settings to define the associated coordinate system and scaling
functions:
In constant/waveProperties:
origin (0 0 0);
direction (1 0 0);
waves
(
Airy
{
length 300;
amplitude 2.5;
phase 0;
angle 0;
}
);
scale table ((1200 1) (1800 0));
crossScale constant 1;
setWaves has been changed to use a system/setWavesDict file rather than
relying on command-line arguments. It also now requires a mean velocity
to be specified in order to prevent ambiguities associated with multiple
inlet patches. An example is shown below:
In system/setWavesDict:
alpha alpha.water;
U U;
liquid true;
UMean (1 0 0);
for consistency with WM_PROJECT. Now "etc" files are assumed to be in etc
sub-directories of WM_PROJECT_SITE and WM_PROJECT_INST_DIR allowing other files
to be stored in those directories. The search order is now:
Search for files from user/group/shipped directories.
The search scheme allows for version-specific and
version-independent files using the following hierarchy:
- \b user settings:
- ~/.OpenFOAM/\<VERSION\>/
- ~/.OpenFOAM/
- \b group (site) settings (when $WM_PROJECT_SITE is set):
- $WM_PROJECT_SITE/\<VERSION\>/etc/
- $WM_PROJECT_SITE/etc/
- \b group (site) settings (when $WM_PROJECT_SITE is not set):
- $WM_PROJECT_INST_DIR/site/\<VERSION\>/etc/
- $WM_PROJECT_INST_DIR/site/etc/
- \b other (shipped) settings:
- $WM_PROJECT_DIR/etc/
\return The list of full paths of all the matching files or
an empty list if the name cannot be found.
Optionally abort if the file cannot be found.
Optionally stop search after the first file has been found.
This change was proposed and agreed by the sponsors of the OpenFOAM project on
the OpenFOAM Hub, see https://openfoam.org/maintenance/
This object calculates a field of the age of fluid in the domain; i.e.,
the time taken for a fluid particle to travel to a location from an
inlet. It outputs a field, named age, with dimensions of time, and
requires a solver and a div(phi,age) scheme to be specified. A number of
corrections for the solution procedure can be set, as well as the name
of the flux and density fields.
Example specification:
age1
{
type age;
libs ("libfieldFunctionObjects.so");
nCorr 10;
phi phi;
rho rho;
}
Example usage:
postProcess -func age -fields "(phi)" -latestTime
This work was supported by Robert Secor and Lori Holmes, at 3M
to simplify reacting case setup.
Tutorials
tutorials/combustion/chemFoam/ic8h18_TDAC
tutorials/combustion/reactingFoam/RAS/SandiaD_LTS
tutorials/combustion/reactingFoam/laminar/counterFlowFlame2DLTS_GRI_TDAC
tutorials/combustion/reactingFoam/laminar/counterFlowFlame2D_GRI_TDAC
updated to benefit from the new configuration files.
Patch contributed by Francesco Contino
Description
Calculates the natural logarithm of the specified scalar field.
Performs \f$ln(max(x, a))\f$ where \f$x\f$ is the field and \f$a\f$ an
optional clip to handle 0 or negative \f$x\f$.
The etc/caseDicts/postProcessing/fields/log configuration file is provided so
that the simple #includeFunc can be used to execute this functionObject during
the run, e.g. for some dimensionless field x
functions
{
#includeFunc log(x)
}
or if x might be 0 or negative in some regions the optional clip may be applied:
functions
{
#includeFunc log(p,clip=1e-6)
}