/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2019 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see .
Application
Test-Distribution2
Description
Test the general distributionModel.
\*---------------------------------------------------------------------------*/
#include "Distribution.H"
#include "Random.H"
#include "dimensionedTypes.H"
#include "argList.H"
#include "distributionModel.H"
#include "IFstream.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
using namespace Foam;
int main(int argc, char *argv[])
{
#include "setRootCase.H"
Random R(918273);
dictionary dict(IFstream("testDict")());
Info << nl << "Testing general distribution" << endl;
Info << nl << "Continuous probability density function:" << endl;
autoPtr dist1
(
distributionModel::New
(
dict.subDict("densityFunction"),
R
)
);
label randomDistributionTestSize = 50000000;
Distribution dS(scalar(1e-6));
Info<< nl
<< "Sampling " << randomDistributionTestSize << " times." << endl;
for (label i = 0; i < randomDistributionTestSize; i++)
{
dS.add(dist1->sample());
}
Info<< "Produced mean " << dS.mean() << endl;
dS.write("densityTest");
dS.clear();
Info << nl << "Discrete probability density function:" << endl;
dist1.clear();
dist1 =
distributionModel::New
(
dict.subDict("cumulativeFunction"),
R
);
Info<< nl
<< "Sampling " << randomDistributionTestSize << " times." << endl;
for (label i = 0; i < randomDistributionTestSize; i++)
{
dS.add(dist1->sample());
}
Info<< "Produced mean " << dS.mean() << endl;
dS.write("cumulativeTest");
Info<< nl << "End" << nl << endl;
return 0;
}
// ************************************************************************* //