/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright (C) 2018 OpenFOAM Foundation \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM. If not, see . \*---------------------------------------------------------------------------*/ #include "surfaceFeatureExtract.H" #include "Time.H" #include "triSurfaceMesh.H" #include "vtkSurfaceWriter.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // void Foam::processHit ( scalar& internalCloseness, scalar& externalCloseness, const label fi, const triSurface& surf, const point& start, const point& p, const point& end, const vector& normal, const vectorField& normals, const List& hitInfo ) { if (hitInfo.size() < 1) { drawHitProblem(fi, surf, start, p, end, hitInfo); } else if (hitInfo.size() == 1) { if (!hitInfo[0].hit()) { } else if (hitInfo[0].index() != fi) { drawHitProblem(fi, surf, start, p, end, hitInfo); } } else { label ownHiti = -1; forAll(hitInfo, hI) { // Find the hit on the triangle that launched the ray if (hitInfo[hI].index() == fi) { ownHiti = hI; break; } } if (ownHiti < 0) { drawHitProblem(fi, surf, start, p, end, hitInfo); } else if (ownHiti == 0) { // There are no internal hits, the first hit is the // closest external hit if ( (normal & normals[hitInfo[ownHiti + 1].index()]) < externalToleranceCosAngle ) { externalCloseness = min ( externalCloseness, mag(p - hitInfo[ownHiti + 1].hitPoint()) ); } } else if (ownHiti == hitInfo.size() - 1) { // There are no external hits, the last but one hit is // the closest internal hit if ( (normal & normals[hitInfo[ownHiti - 1].index()]) < internalToleranceCosAngle ) { internalCloseness = min ( internalCloseness, mag(p - hitInfo[ownHiti - 1].hitPoint()) ); } } else { if ( (normal & normals[hitInfo[ownHiti + 1].index()]) < externalToleranceCosAngle ) { externalCloseness = min ( externalCloseness, mag(p - hitInfo[ownHiti + 1].hitPoint()) ); } if ( (normal & normals[hitInfo[ownHiti - 1].index()]) < internalToleranceCosAngle ) { internalCloseness = min ( internalCloseness, mag(p - hitInfo[ownHiti - 1].hitPoint()) ); } } } } void Foam::extractPointCloseness ( const fileName &sFeatFileName, const Time& runTime, const triSurface &surf, const bool writeVTK ) { // Searchable triSurface const triSurfaceMesh searchSurf ( IOobject ( sFeatFileName + ".closeness", runTime.constant(), "triSurface", runTime ), surf ); // Prepare start and end points for intersection tests const pointField& points = searchSurf.points(); const labelList& meshPoints = searchSurf.meshPoints(); const pointField& faceCentres = searchSurf.faceCentres(); const vectorField& normals = searchSurf.faceNormals(); const labelListList& pointFaces = searchSurf.pointFaces(); const scalar span = searchSurf.bounds().mag(); label nPointFaces = 0; forAll(pointFaces, pfi) { nPointFaces += pointFaces[pfi].size(); } pointField facePoints(nPointFaces); pointField start(nPointFaces); pointField end(nPointFaces); label i = 0; forAll(points, pi) { forAll(pointFaces[pi], pfi) { const label fi = pointFaces[pi][pfi]; facePoints[i] = (0.9*points[meshPoints[pi]] + 0.1*faceCentres[fi]); const vector& n = normals[fi]; start[i] = facePoints[i] - span*n; end[i] = facePoints[i] + span*n; i++; } } List> allHitinfo; // Find all intersections (in order) searchSurf.findLineAll(start, end, allHitinfo); scalarField internalCloseness(points.size(), great); scalarField externalCloseness(points.size(), great); i = 0; forAll(points, pi) { forAll(pointFaces[pi], pfi) { const label fi = pointFaces[pi][pfi]; const List& hitInfo = allHitinfo[i]; processHit ( internalCloseness[pi], externalCloseness[pi], fi, surf, start[i], facePoints[i], end[i], normals[fi], normals, hitInfo ); i++; } } triSurfacePointScalarField internalClosenessPointField ( IOobject ( sFeatFileName + ".internalPointCloseness", runTime.constant(), "triSurface", runTime ), surf, dimLength, internalCloseness ); internalClosenessPointField.write(); triSurfacePointScalarField externalClosenessPointField ( IOobject ( sFeatFileName + ".externalPointCloseness", runTime.constant(), "triSurface", runTime ), surf, dimLength, externalCloseness ); externalClosenessPointField.write(); if (writeVTK) { const faceList faces(surf.faces()); const Map