/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | Website: https://openfoam.org \\ / A nd | Copyright (C) 2022-2024 OpenFOAM Foundation \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM. If not, see . \*---------------------------------------------------------------------------*/ #include "isothermalFluid.H" #include "fvcFlux.H" #include "fvcSmooth.H" #include "fvcSurfaceIntegrate.H" // * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * // void Foam::solvers::isothermalFluid::setRDeltaT() { const volScalarField& psi = thermo.psi(); volScalarField& rDeltaT = trDeltaT.ref(); const dictionary& pimpleDict = pimple.dict(); const scalar maxCo ( pimpleDict.lookupOrDefault("maxCo", 0.8) ); const scalar rDeltaTSmoothingCoeff ( pimpleDict.lookupOrDefault("rDeltaTSmoothingCoeff", 0.02) ); const volScalarField rDeltaT0("rDeltaT0", rDeltaT); // Set the reciprocal time-step from the local Courant number rDeltaT.internalFieldRef() = fvc::surfaceSum(mag(phi))()()/((2*maxCo)*mesh.V()*rho()); // Set the reciprocal time-step from the local acoustic Courant number if (pimple.transonic()) { surfaceScalarField phid("phid", fvc::interpolate(psi)*fvc::flux(U)); rDeltaT.internalFieldRef() = max ( rDeltaT(), fvc::surfaceSum(mag(phid))()()/((2*maxCo)*mesh.V()*psi()) ); } // Clip to user-defined maximum and minimum time-steps scalar minRDeltaT = gMin(rDeltaT.primitiveField()); if (pimpleDict.found("maxDeltaT") || minRDeltaT < rootVSmall) { const scalar clipRDeltaT = 1/pimpleDict.lookup("maxDeltaT"); rDeltaT.max(clipRDeltaT); minRDeltaT = max(minRDeltaT, clipRDeltaT); } if (pimpleDict.found("minDeltaT")) { const scalar clipRDeltaT = 1/pimpleDict.lookup("minDeltaT"); rDeltaT.min(clipRDeltaT); minRDeltaT = min(minRDeltaT, clipRDeltaT); } Info<< "Flow time scale min/max = " << gMin(1/rDeltaT.primitiveField()) << ", " << 1/minRDeltaT << endl; // Update the boundary values of the reciprocal time-step rDeltaT.correctBoundaryConditions(); if (rDeltaTSmoothingCoeff < 1.0) { fvc::smooth(rDeltaT, rDeltaTSmoothingCoeff); } Info<< "Smoothed flow time scale min/max = " << gMin(1/rDeltaT.primitiveField()) << ", " << gMax(1/rDeltaT.primitiveField()) << endl; // Limit rate of change of time scale // - reduce as much as required // - only increase at a fraction of old time scale if ( pimpleDict.found("rDeltaTDampingCoeff") && runTime.timeIndex() > runTime.startTimeIndex() + 1 ) { // Damping coefficient (1-0) const scalar rDeltaTDampingCoeff ( pimpleDict.lookup("rDeltaTDampingCoeff") ); rDeltaT = rDeltaT0 *max(rDeltaT/rDeltaT0, scalar(1) - rDeltaTDampingCoeff); Info<< "Damped flow time scale min/max = " << gMin(1/rDeltaT.primitiveField()) << ", " << gMax(1/rDeltaT.primitiveField()) << endl; } } // ************************************************************************* //