/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2011-2023 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see .
\*---------------------------------------------------------------------------*/
#include "meshToMesh0.H"
#include "processorFvPatch.H"
#include "demandDrivenData.H"
#include "treeDataCell.H"
#include "treeDataFace.H"
#include "tetOverlapVolume.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(meshToMesh0, 0);
}
const Foam::scalar Foam::meshToMesh0::directHitTol = 1e-5;
void Foam::meshToMesh0::calcAddressing()
{
if (debug)
{
InfoInFunction
<< "Calculating mesh-to-mesh cell addressing" << endl;
}
// Set reference to cells
const cellList& fromCells = fromMesh_.cells();
const pointField& fromPoints = fromMesh_.points();
// In an attempt to preserve the efficiency of linear search and prevent
// failure, a RESCUE mechanism will be set up. Here, we shall mark all
// cells next to the solid boundaries. If such a cell is found as the
// closest, the relationship between the origin and cell will be examined.
// If the origin is outside the cell, a global n-squared search is
// triggered.
// SETTING UP RESCUE
// Visit all boundaries and mark the cell next to the boundary.
if (debug)
{
InfoInFunction << "Setting up rescue" << endl;
}
List boundaryCell(fromCells.size(), false);
// Set reference to boundary
const polyPatchList& patchesFrom = fromMesh_.boundaryMesh();
forAll(patchesFrom, patchi)
{
// Get reference to cells next to the boundary
const labelUList& bCells = patchesFrom[patchi].faceCells();
forAll(bCells, facei)
{
boundaryCell[bCells[facei]] = true;
}
}
treeBoundBox meshBb(fromPoints);
scalar typDim = meshBb.avgDim()/(2.0*cbrt(scalar(fromCells.size())));
treeBoundBox shiftedBb
(
meshBb.min(),
meshBb.max() + vector(typDim, typDim, typDim)
);
if (debug)
{
Info<< "\nMesh\n"
<< " bounding box : " << meshBb << nl
<< " bounding box (shifted) : " << shiftedBb << nl
<< " typical dimension :" << shiftedBb.typDim() << endl;
}
indexedOctree oc
(
treeDataCell(false, fromMesh_, polyMesh::CELL_TETS),
shiftedBb, // overall bounding box
8, // maxLevel
10, // leafsize
6.0 // duplicity
);
if (debug)
{
oc.print(Pout, false, 0);
}
cellAddresses
(
cellAddressing_,
toMesh_.cellCentres(),
fromMesh_,
boundaryCell,
oc
);
forAll(toMesh_.boundaryMesh(), patchi)
{
const polyPatch& toPatch = toMesh_.boundaryMesh()[patchi];
if (cuttingPatches_.found(toPatch.name()))
{
boundaryAddressing_[patchi].setSize(toPatch.size());
cellAddresses
(
boundaryAddressing_[patchi],
toPatch.faceCentres(),
fromMesh_,
boundaryCell,
oc
);
}
else if
(
patchMap_.found(toPatch.name())
&& fromMeshPatches_.found(patchMap_.find(toPatch.name())())
)
{
const polyPatch& fromPatch = fromMesh_.boundaryMesh()
[
fromMeshPatches_.find(patchMap_.find(toPatch.name())())()
];
if (fromPatch.empty())
{
WarningInFunction
<< "Source patch " << fromPatch.name()
<< " has no faces. Not performing mapping for it."
<< endl;
boundaryAddressing_[patchi].setSize(toPatch.size());
boundaryAddressing_[patchi] = -1;
}
else
{
treeBoundBox wallBb(fromPatch.localPoints());
scalar typDim =
wallBb.avgDim()/(2.0*sqrt(scalar(fromPatch.size())));
treeBoundBox shiftedBb
(
wallBb.min(),
wallBb.max() + vector(typDim, typDim, typDim)
);
// Note: allow more levels than in meshSearch. Assume patch
// is not as big as all boundary faces
indexedOctree oc
(
treeDataFace(false, fromPatch),
shiftedBb, // overall search domain
12, // maxLevel
10, // leafsize
6.0 // duplicity
);
const vectorField::subField centresToBoundary =
toPatch.faceCentres();
boundaryAddressing_[patchi].setSize(toPatch.size());
const scalar distSqr = sqr(wallBb.mag());
forAll(toPatch, toi)
{
boundaryAddressing_[patchi][toi] = oc.findNearest
(
centresToBoundary[toi],
distSqr
).index();
}
}
}
}
if (debug)
{
InfoInFunction
<< "Finished calculating mesh-to-mesh cell addressing" << endl;
}
}
void Foam::meshToMesh0::cellAddresses
(
labelList& cellAddressing_,
const pointField& points,
const fvMesh& fromMesh,
const List& boundaryCell,
const indexedOctree& oc
) const
{
// The implemented search method is a simple neighbour array search.
// It starts from a cell zero, searches its neighbours and finds one
// which is nearer to the target point than the current position.
// The location of the "current position" is reset to that cell and
// search through the neighbours continues. The search is finished
// when all the neighbours of the cell are farther from the target
// point than the current cell
// Set curCell label to zero (start)
label curCell = 0;
// Set reference to cell to cell addressing
const vectorField& centresFrom = fromMesh.cellCentres();
const labelListList& cc = fromMesh.cellCells();
forAll(points, toi)
{
// Pick up target position
const vector& p = points[toi];
// Set the sqr-distance
scalar distSqr = magSqr(p - centresFrom[curCell]);
bool closer;
do
{
closer = false;
// Set the current list of neighbouring cells
const labelList& neighbours = cc[curCell];
forAll(neighbours, ni)
{
const scalar curDistSqr =
magSqr(p - centresFrom[neighbours[ni]]);
// Search through all the neighbours.
// If the cell is closer, reset current cell and distance
if (curDistSqr < (1 - small)*distSqr)
{
curCell = neighbours[ni];
distSqr = curDistSqr;
closer = true; // A closer neighbour has been found
}
}
} while (closer);
cellAddressing_[toi] = -1;
// Check point is actually in the nearest cell
if (fromMesh.pointInCell(p, curCell))
{
cellAddressing_[toi] = curCell;
}
else
{
// If curCell is a boundary cell then the point maybe either outside
// the domain or in an other region of the domain, either way use
// the octree search to find it.
if (boundaryCell[curCell])
{
cellAddressing_[toi] = oc.findInside(p);
if (cellAddressing_[toi] != -1)
{
curCell = cellAddressing_[toi];
}
}
else
{
// If not on the boundary search the neighbours
bool found = false;
// Set the current list of neighbouring cells
const labelList& neighbours = cc[curCell];
forAll(neighbours, ni)
{
// Search through all the neighbours.
// If point is in neighbour reset current cell
if (fromMesh.pointInCell(p, neighbours[ni]))
{
cellAddressing_[toi] = neighbours[ni];
found = true;
break;
}
}
if (!found)
{
// If still not found search the neighbour-neighbours
// Set the current list of neighbouring cells
const labelList& neighbours = cc[curCell];
forAll(neighbours, ni)
{
// Set the current list of neighbour-neighbouring cells
const labelList& nn = cc[neighbours[ni]];
forAll(nn, ni)
{
// Search through all the neighbours.
// If point is in neighbour reset current cell
if (fromMesh.pointInCell(p, nn[ni]))
{
cellAddressing_[toi] = nn[ni];
found = true;
break;
}
}
if (found) break;
}
}
if (!found)
{
// Still not found so use the octree
cellAddressing_[toi] = oc.findInside(p);
if (cellAddressing_[toi] != -1)
{
curCell = cellAddressing_[toi];
}
}
}
}
}
}
void Foam::meshToMesh0::calculateInverseDistanceWeights() const
{
if (debug)
{
InfoInFunction
<< "Calculating inverse distance weighting factors" << endl;
}
if (inverseDistanceWeightsPtr_)
{
FatalErrorInFunction
<< "weighting factors already calculated"
<< exit(FatalError);
}
//- Initialise overlap volume to zero
V_ = 0.0;
inverseDistanceWeightsPtr_ = new scalarListList(toMesh_.nCells());
scalarListList& invDistCoeffs = *inverseDistanceWeightsPtr_;
// get reference to source mesh data
const labelListList& cc = fromMesh_.cellCells();
const vectorField& centreFrom = fromMesh_.C();
const vectorField& centreTo = toMesh_.C();
forAll(cellAddressing_, celli)
{
if (cellAddressing_[celli] != -1)
{
const vector& target = centreTo[celli];
scalar m = mag(target - centreFrom[cellAddressing_[celli]]);
const labelList& neighbours = cc[cellAddressing_[celli]];
// if the nearest cell is a boundary cell or there is a direct hit,
// pick up the value
label directCelli = -1;
if (m < directHitTol || neighbours.empty())
{
directCelli = celli;
}
else
{
forAll(neighbours, ni)
{
scalar nm = mag(target - centreFrom[neighbours[ni]]);
if (nm < directHitTol)
{
directCelli = neighbours[ni];
break;
}
}
}
if (directCelli != -1)
{
// Direct hit
invDistCoeffs[directCelli].setSize(1);
invDistCoeffs[directCelli][0] = 1.0;
V_ += fromMesh_.V()[cellAddressing_[directCelli]];
}
else
{
invDistCoeffs[celli].setSize(neighbours.size() + 1);
// The first coefficient corresponds to the centre cell.
// The rest is ordered in the same way as the cellCells list.
scalar invDist = 1.0/m;
invDistCoeffs[celli][0] = invDist;
scalar sumInvDist = invDist;
// now add the neighbours
forAll(neighbours, ni)
{
invDist = 1.0/mag(target - centreFrom[neighbours[ni]]);
invDistCoeffs[celli][ni + 1] = invDist;
sumInvDist += invDist;
}
// divide by the total inverse-distance
forAll(invDistCoeffs[celli], i)
{
invDistCoeffs[celli][i] /= sumInvDist;
}
V_ +=
invDistCoeffs[celli][0]
*fromMesh_.V()[cellAddressing_[celli]];
for (label i = 1; i < invDistCoeffs[celli].size(); i++)
{
V_ +=
invDistCoeffs[celli][i]*fromMesh_.V()[neighbours[i-1]];
}
}
}
}
}
void Foam::meshToMesh0::calculateInverseVolumeWeights() const
{
if (debug)
{
InfoInFunction
<< "Calculating inverse volume weighting factors" << endl;
}
if (inverseVolumeWeightsPtr_)
{
FatalErrorInFunction
<< "weighting factors already calculated"
<< exit(FatalError);
}
//- Initialise overlap volume to zero
V_ = 0.0;
inverseVolumeWeightsPtr_ = new scalarListList(toMesh_.nCells());
scalarListList& invVolCoeffs = *inverseVolumeWeightsPtr_;
const labelListList& cellToCell = cellToCellAddressing();
tetOverlapVolume overlapEngine;
forAll(cellToCell, celli)
{
const labelList& overlapCells = cellToCell[celli];
if (overlapCells.size() > 0)
{
invVolCoeffs[celli].setSize(overlapCells.size());
forAll(overlapCells, j)
{
label cellFrom = overlapCells[j];
treeBoundBox bbFromMesh
(
pointField
(
fromMesh_.points(),
fromMesh_.cellPoints()[cellFrom]
)
);
scalar v = overlapEngine.cellCellOverlapVolumeMinDecomp
(
toMesh_,
celli,
fromMesh_,
cellFrom,
bbFromMesh
);
invVolCoeffs[celli][j] = v/toMesh_.V()[celli];
V_ += v;
}
}
}
}
void Foam::meshToMesh0::calculateCellToCellAddressing() const
{
if (debug)
{
InfoInFunction
<< "Calculating cell to cell addressing" << endl;
}
if (cellToCellAddressingPtr_)
{
FatalErrorInFunction
<< "addressing already calculated"
<< exit(FatalError);
}
//- Initialise overlap volume to zero
V_ = 0.0;
tetOverlapVolume overlapEngine;
cellToCellAddressingPtr_ = new labelListList(toMesh_.nCells());
labelListList& cellToCell = *cellToCellAddressingPtr_;
forAll(cellToCell, iTo)
{
const labelList overLapCells =
overlapEngine.overlappingCells(fromMesh_, toMesh_, iTo);
if (overLapCells.size() > 0)
{
cellToCell[iTo].setSize(overLapCells.size());
forAll(overLapCells, j)
{
cellToCell[iTo][j] = overLapCells[j];
V_ += fromMesh_.V()[overLapCells[j]];
}
}
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::meshToMesh0::meshToMesh0
(
const fvMesh& meshFrom,
const fvMesh& meshTo,
const HashTable& patchMap,
const wordList& cuttingPatchNames
)
:
fromMesh_(meshFrom),
toMesh_(meshTo),
patchMap_(patchMap),
cellAddressing_(toMesh_.nCells()),
boundaryAddressing_(toMesh_.boundaryMesh().size()),
inverseDistanceWeightsPtr_(nullptr),
inverseVolumeWeightsPtr_(nullptr),
cellToCellAddressingPtr_(nullptr),
V_(0.0)
{
forAll(fromMesh_.boundaryMesh(), patchi)
{
fromMeshPatches_.insert
(
fromMesh_.boundaryMesh()[patchi].name(),
patchi
);
}
forAll(toMesh_.boundaryMesh(), patchi)
{
toMeshPatches_.insert
(
toMesh_.boundaryMesh()[patchi].name(),
patchi
);
}
forAll(cuttingPatchNames, i)
{
if (toMeshPatches_.found(cuttingPatchNames[i]))
{
cuttingPatches_.insert
(
cuttingPatchNames[i],
toMeshPatches_.find(cuttingPatchNames[i])()
);
}
else
{
WarningInFunction
<< "Cannot find cutting-patch " << cuttingPatchNames[i]
<< " in destination mesh" << endl;
}
}
forAll(toMesh_.boundaryMesh(), patchi)
{
// Add the processor patches in the toMesh to the cuttingPatches list
if (isA(toMesh_.boundaryMesh()[patchi]))
{
cuttingPatches_.insert
(
toMesh_.boundaryMesh()[patchi].name(),
patchi
);
}
}
calcAddressing();
}
Foam::meshToMesh0::meshToMesh0
(
const fvMesh& meshFrom,
const fvMesh& meshTo
)
:
fromMesh_(meshFrom),
toMesh_(meshTo),
cellAddressing_(toMesh_.nCells()),
boundaryAddressing_(toMesh_.boundaryMesh().size()),
inverseDistanceWeightsPtr_(nullptr),
inverseVolumeWeightsPtr_(nullptr),
cellToCellAddressingPtr_(nullptr),
V_(0.0)
{
// check whether both meshes have got the same number
// of boundary patches
if (fromMesh_.boundary().size() != toMesh_.boundary().size())
{
FatalErrorInFunction
<< "Incompatible meshes: different number of patches, "
<< "fromMesh = " << fromMesh_.boundary().size()
<< ", toMesh = " << toMesh_.boundary().size()
<< exit(FatalError);
}
forAll(fromMesh_.boundaryMesh(), patchi)
{
if
(
fromMesh_.boundaryMesh()[patchi].name()
!= toMesh_.boundaryMesh()[patchi].name()
)
{
FatalErrorInFunction
<< "Incompatible meshes: different patch names for patch "
<< patchi
<< ", fromMesh = " << fromMesh_.boundary()[patchi].name()
<< ", toMesh = " << toMesh_.boundary()[patchi].name()
<< exit(FatalError);
}
if
(
fromMesh_.boundaryMesh()[patchi].type()
!= toMesh_.boundaryMesh()[patchi].type()
)
{
FatalErrorInFunction
<< "Incompatible meshes: different patch types for patch "
<< patchi
<< ", fromMesh = " << fromMesh_.boundary()[patchi].type()
<< ", toMesh = " << toMesh_.boundary()[patchi].type()
<< exit(FatalError);
}
fromMeshPatches_.insert
(
fromMesh_.boundaryMesh()[patchi].name(),
patchi
);
toMeshPatches_.insert
(
toMesh_.boundaryMesh()[patchi].name(),
patchi
);
patchMap_.insert
(
toMesh_.boundaryMesh()[patchi].name(),
fromMesh_.boundaryMesh()[patchi].name()
);
}
calcAddressing();
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::meshToMesh0::~meshToMesh0()
{
deleteDemandDrivenData(inverseDistanceWeightsPtr_);
deleteDemandDrivenData(inverseVolumeWeightsPtr_);
deleteDemandDrivenData(cellToCellAddressingPtr_);
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
const Foam::scalarListList& Foam::meshToMesh0::inverseDistanceWeights() const
{
if (!inverseDistanceWeightsPtr_)
{
calculateInverseDistanceWeights();
}
return *inverseDistanceWeightsPtr_;
}
const Foam::scalarListList& Foam::meshToMesh0::inverseVolumeWeights() const
{
if (!inverseVolumeWeightsPtr_)
{
calculateInverseVolumeWeights();
}
return *inverseVolumeWeightsPtr_;
}
const Foam::labelListList& Foam::meshToMesh0::cellToCellAddressing() const
{
if (!cellToCellAddressingPtr_)
{
calculateCellToCellAddressing();
}
return *cellToCellAddressingPtr_;
}
// ************************************************************************* //