/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | Website: https://openfoam.org \\ / A nd | Copyright (C) 2011-2020 OpenFOAM Foundation \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM. If not, see . \*---------------------------------------------------------------------------*/ #include "interfaceProperties.H" #include "alphaContactAngleFvPatchScalarField.H" #include "unitConversion.H" #include "surfaceInterpolate.H" #include "fvcDiv.H" #include "fvcGrad.H" #include "fvcSnGrad.H" // * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * // // Correction for the boundary condition on the unit normal nHat on // walls to produce the correct contact angle. // The dynamic contact angle is calculated from the component of the // velocity on the direction of the interface, parallel to the wall. void Foam::interfaceProperties::correctContactAngle ( surfaceVectorField::Boundary& nHatb, const surfaceVectorField::Boundary& gradAlphaf ) { const fvMesh& mesh = alpha1_.mesh(); volScalarField::Boundary& a1bf = alpha1_.boundaryFieldRef(); volScalarField::Boundary& a2bf = alpha2_.boundaryFieldRef(); const fvBoundaryMesh& boundary = mesh.boundary(); forAll(boundary, patchi) { if (isA(a1bf[patchi])) { alphaContactAngleFvPatchScalarField& a1cap = refCast ( a1bf[patchi] ); fvsPatchVectorField& nHatp = nHatb[patchi]; const scalarField theta ( degToRad(a1cap.theta(U_.boundaryField()[patchi], nHatp)) ); const vectorField nf ( boundary[patchi].nf() ); // Reset nHatp to correspond to the contact angle const scalarField a12(nHatp & nf); const scalarField b1(cos(theta)); scalarField b2(nHatp.size()); forAll(b2, facei) { b2[facei] = cos(acos(a12[facei]) - theta[facei]); } const scalarField det(1.0 - a12*a12); scalarField a((b1 - a12*b2)/det); scalarField b((b2 - a12*b1)/det); nHatp = a*nf + b*nHatp; nHatp /= (mag(nHatp) + deltaN_.value()); a1cap.gradient() = (nf & nHatp)*mag(gradAlphaf[patchi]); a1cap.evaluate(); a2bf[patchi] = 1 - a1cap; } } } void Foam::interfaceProperties::calculateK() { const fvMesh& mesh = alpha1_.mesh(); const surfaceVectorField& Sf = mesh.Sf(); // Cell gradient of alpha const volVectorField gradAlpha(fvc::grad(alpha1_, "nHat")); // Interpolated face-gradient of alpha surfaceVectorField gradAlphaf(fvc::interpolate(gradAlpha)); // gradAlphaf -= // (mesh.Sf()/mesh.magSf()) // *(fvc::snGrad(alpha1_) - (mesh.Sf() & gradAlphaf)/mesh.magSf()); // Face unit interface normal surfaceVectorField nHatfv(gradAlphaf/(mag(gradAlphaf) + deltaN_)); // surfaceVectorField nHatfv // ( // (gradAlphaf + deltaN_*vector(0, 0, 1) // *sign(gradAlphaf.component(vector::Z)))/(mag(gradAlphaf) + deltaN_) // ); correctContactAngle(nHatfv.boundaryFieldRef(), gradAlphaf.boundaryField()); // Face unit interface normal flux nHatf_ = nHatfv & Sf; // Simple expression for curvature K_ = -fvc::div(nHatf_); // Complex expression for curvature. // Correction is formally zero but numerically non-zero. /* volVectorField nHat(gradAlpha/(mag(gradAlpha) + deltaN_)); forAll(nHat.boundaryField(), patchi) { nHat.boundaryField()[patchi] = nHatfv.boundaryField()[patchi]; } K_ = -fvc::div(nHatf_) + (nHat & fvc::grad(nHatfv) & nHat); */ } // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * // Foam::interfaceProperties::interfaceProperties ( volScalarField& alpha1, volScalarField& alpha2, const volVectorField& U, const IOdictionary& dict ) : transportPropertiesDict_(dict), sigmaPtr_(surfaceTensionModel::New(dict, alpha1.mesh())), deltaN_ ( "deltaN", 1e-8/pow(average(alpha1.mesh().V()), 1.0/3.0) ), alpha1_(alpha1), alpha2_(alpha2), U_(U), nHatf_ ( IOobject ( "nHatf", alpha1_.time().timeName(), alpha1_.mesh() ), alpha1_.mesh(), dimensionedScalar(dimArea, 0) ), K_ ( IOobject ( "interfaceProperties:K", alpha1_.time().timeName(), alpha1_.mesh() ), alpha1_.mesh(), dimensionedScalar(dimless/dimLength, 0) ) { calculateK(); } // * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * // Foam::tmp Foam::interfaceProperties::sigmaK() const { return sigmaPtr_->sigma()*K_; } Foam::tmp Foam::interfaceProperties::surfaceTensionForce() const { return fvc::interpolate(sigmaK())*fvc::snGrad(alpha1_); } Foam::tmp Foam::interfaceProperties::nearInterface() const { return pos0(alpha1_ - 0.01)*pos0(0.99 - alpha1_); } void Foam::interfaceProperties::correct() { calculateK(); } bool Foam::interfaceProperties::read() { sigmaPtr_->readDict(transportPropertiesDict_); return true; } // ************************************************************************* //