/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | Website: https://openfoam.org \\ / A nd | Copyright (C) 2022-2023 OpenFOAM Foundation \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM. If not, see . \*---------------------------------------------------------------------------*/ #include "compressibleVoF.H" #include "constrainHbyA.H" #include "constrainPressure.H" #include "adjustPhi.H" #include "fvcMeshPhi.H" #include "fvcFlux.H" #include "fvcDdt.H" #include "fvcSnGrad.H" #include "fvcReconstruct.H" #include "fvmDiv.H" #include "fvmSup.H" #include "fvmLaplacian.H" // * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * // void Foam::solvers::compressibleVoF::pressureCorrector() { volVectorField& U = U_; surfaceScalarField& phi(phi_); const volScalarField& rho1 = mixture.rho1(); const volScalarField& rho2 = mixture.rho2(); const volScalarField& psi1 = mixture.thermo1().psi(); const volScalarField& psi2 = mixture.thermo2().psi(); fvVectorMatrix& UEqn = tUEqn.ref(); setrAU(UEqn); const surfaceScalarField rAUf("rAUf", fvc::interpolate(rAU())); const surfaceScalarField alphaPhi2("alphaPhi2", phi - alphaPhi1); while (pimple.correct()) { const volVectorField HbyA(constrainHbyA(rAU()*UEqn.H(), U, p_rgh)); surfaceScalarField phiHbyA ( "phiHbyA", fvc::flux(HbyA) + fvc::interpolate(rho*rAU())*fvc::ddtCorr(U, phi, Uf) ); MRF.makeRelative(phiHbyA); const surfaceScalarField phig ( ( surfaceTensionForce() - buoyancy.ghf*fvc::snGrad(rho) )*rAUf*mesh.magSf() ); phiHbyA += phig; // Update the pressure BCs to ensure flux consistency constrainPressure(p_rgh, U, phiHbyA, rAUf, MRF); // Cache any sources fvScalarMatrix p_rghEqnSource ( fvModels().sourceProxy(alpha1, rho1, p_rgh)/rho1 + fvModels().sourceProxy(alpha2, rho2, p_rgh)/rho2 ); // Make the fluxes relative to the mesh motion fvc::makeRelative(phiHbyA, U); tmp p_rghEqnComp1; tmp p_rghEqnComp2; if (pimple.transonic()) { const surfaceScalarField rho1f(fvc::interpolate(rho1)); const surfaceScalarField rho2f(fvc::interpolate(rho2)); surfaceScalarField phid1("phid1", fvc::interpolate(psi1)*phi); surfaceScalarField phid2("phid2", fvc::interpolate(psi2)*phi); p_rghEqnComp1 = ( (fvc::ddt(alpha1, rho1) + fvc::div(alphaPhi1*rho1f))/rho1 - fvc::ddt(alpha1) - fvc::div(alphaPhi1) + (alpha1/rho1) *correction ( psi1*fvm::ddt(p_rgh) + fvm::div(phid1, p_rgh) - fvm::Sp(fvc::div(phid1), p_rgh) ) ); p_rghEqnComp2 = ( (fvc::ddt(alpha2, rho2) + fvc::div(alphaPhi2*rho2f))/rho2 - fvc::ddt(alpha2) - fvc::div(alphaPhi2) + (alpha2/rho2) *correction ( psi2*fvm::ddt(p_rgh) + fvm::div(phid2, p_rgh) - fvm::Sp(fvc::div(phid2), p_rgh) ) ); } else { const surfaceScalarField rho1f(fvc::interpolate(rho1)); const surfaceScalarField rho2f(fvc::interpolate(rho2)); p_rghEqnComp1 = ( (fvc::ddt(alpha1, rho1) + fvc::div(alphaPhi1*rho1f))/rho1 - fvc::ddt(alpha1) - fvc::div(alphaPhi1) + (alpha1*psi1/rho1)*correction(fvm::ddt(p_rgh)) ); p_rghEqnComp2 = ( (fvc::ddt(alpha2, rho2) + fvc::div(alphaPhi2*rho2f))/rho2 - fvc::ddt(alpha2) - fvc::div(alphaPhi2) + (alpha2*psi2/rho2)*correction(fvm::ddt(p_rgh)) ); } if (mesh.moving()) { p_rghEqnComp1.ref() += fvc::div(mesh.phi())*alpha1; p_rghEqnComp2.ref() += fvc::div(mesh.phi())*alpha2; } p_rghEqnComp1.ref() *= pos(alpha1); p_rghEqnComp2.ref() *= pos(alpha2); if (pimple.transonic()) { p_rghEqnComp1.ref().relax(); p_rghEqnComp2.ref().relax(); } // Cache p_rgh prior to solve for density update const volScalarField p_rgh_0(p_rgh); while (pimple.correctNonOrthogonal()) { fvScalarMatrix p_rghEqnIncomp ( fvc::div(phiHbyA) - fvm::laplacian(rAUf, p_rgh) == p_rghEqnSource ); { fvScalarMatrix p_rghEqn ( p_rghEqnComp1() + p_rghEqnComp2() + p_rghEqnIncomp ); fvConstraints().constrain(p_rghEqn); p_rghEqn.solve(); } if (pimple.finalNonOrthogonalIter()) { dgdt = ( alpha1*(p_rghEqnComp2 & p_rgh) - alpha2*(p_rghEqnComp1 & p_rgh) ); phi = phiHbyA + p_rghEqnIncomp.flux(); p = p_rgh + rho*buoyancy.gh; fvConstraints().constrain(p); p_rgh = p - rho*buoyancy.gh; p_rgh.correctBoundaryConditions(); U = HbyA + rAU()*fvc::reconstruct((phig + p_rghEqnIncomp.flux())/rAUf); U.correctBoundaryConditions(); fvConstraints().constrain(U); } } // Update densities from change in p_rgh mixture_.thermo1().correctRho(psi1*(p_rgh - p_rgh_0)); mixture_.thermo2().correctRho(psi2*(p_rgh - p_rgh_0)); mixture_.correct(); // Correct p_rgh for consistency with p and the updated densities p_rgh = p - rho*buoyancy.gh; p_rgh.correctBoundaryConditions(); } // Correct Uf if the mesh is moving fvc::correctUf(Uf, U, fvc::absolute(phi, U), MRF); K = 0.5*magSqr(U); clearrAU(); tUEqn.clear(); } // ************************************************************************* //