/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | Website: https://openfoam.org \\ / A nd | Copyright (C) 2023 OpenFOAM Foundation \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM. If not, see . \*---------------------------------------------------------------------------*/ #include "twoPhaseVoFSolver.H" #include "localEulerDdtScheme.H" #include "fvcAverage.H" // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * // namespace Foam { namespace solvers { defineTypeNameAndDebug(twoPhaseVoFSolver, 0); } } // * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * // void Foam::solvers::twoPhaseVoFSolver::correctCoNum() { VoFSolver::correctCoNum(); const scalarField sumPhi ( interface.nearInterface()().primitiveField() *fvc::surfaceSum(mag(phi))().primitiveField() ); alphaCoNum = 0.5*gMax(sumPhi/mesh.V().field())*runTime.deltaTValue(); const scalar meanAlphaCoNum = 0.5*(gSum(sumPhi)/gSum(mesh.V().field()))*runTime.deltaTValue(); Info<< "Interface Courant Number mean: " << meanAlphaCoNum << " max: " << alphaCoNum << endl; } // * * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * // void Foam::solvers::twoPhaseVoFSolver::correctInterface() { interface.correct(); } Foam::tmp Foam::solvers::twoPhaseVoFSolver::surfaceTensionForce() const { return interface.surfaceTensionForce(); } // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * // Foam::solvers::twoPhaseVoFSolver::twoPhaseVoFSolver ( fvMesh& mesh, autoPtr mixturePtr ) : VoFSolver(mesh, autoPtr(mixturePtr.ptr())), mixture(refCast(VoFSolver::mixture)), alpha1(mixture.alpha1()), alpha2(mixture.alpha2()), alphaRestart ( typeIOobject ( IOobject::groupName("alphaPhi", alpha1.group()), runTime.name(), mesh, IOobject::READ_IF_PRESENT, IOobject::AUTO_WRITE ).headerOk() ), interface(mixture, alpha1, alpha2, U), alphaPhi1 ( IOobject ( IOobject::groupName("alphaPhi", alpha1.group()), runTime.name(), mesh, IOobject::READ_IF_PRESENT, IOobject::AUTO_WRITE ), phi*fvc::interpolate(alpha1) ) { mesh.schemes().setFluxRequired(alpha1.name()); if (alphaRestart) { Info << "Restarting alpha" << endl; } if (transient()) { correctCoNum(); } } // * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * // Foam::solvers::twoPhaseVoFSolver::~twoPhaseVoFSolver() {} // * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * // void Foam::solvers::twoPhaseVoFSolver::preSolve() { VoFSolver::preSolve(); // Do not apply previous time-step mesh compression flux // if the mesh topology changed if (mesh().topoChanged()) { talphaPhi1Corr0.clear(); } } void Foam::solvers::twoPhaseVoFSolver::prePredictor() { VoFSolver::prePredictor(); alphaPredictor(); } // ************************************************************************* //