/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2011-2023 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see .
Application
reconstructPar
Description
Reconstructs fields of a case that is decomposed for parallel
execution of OpenFOAM.
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "timeSelector.H"
#include "IOobjectList.H"
#include "processorRunTimes.H"
#include "multiDomainDecomposition.H"
#include "fvFieldReconstructor.H"
#include "pointFieldReconstructor.H"
#include "lagrangianFieldReconstructor.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
bool haveUniform
(
const processorRunTimes& runTimes,
const word& regionDir = word::null
)
{
return
fileHandler().isDir
(
fileHandler().filePath
(
runTimes.procTimes()[0].timePath()/regionDir/"uniform"
)
);
}
void reconstructUniform
(
const processorRunTimes& runTimes,
const word& regionDir = word::null
)
{
fileHandler().cp
(
fileHandler().filePath
(
runTimes.procTimes()[0].timePath()/regionDir/"uniform"
),
runTimes.completeTime().timePath()/regionDir
);
}
void writeDecomposition(const domainDecomposition& meshes)
{
// Write as volScalarField::Internal for postprocessing.
volScalarField::Internal cellProc
(
IOobject
(
"cellProc",
meshes.completeMesh().time().name(),
meshes.completeMesh(),
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
meshes.completeMesh(),
dimless,
scalarField(scalarList(meshes.cellProc()))
);
cellProc.write();
Info<< "Wrote decomposition as volScalarField::Internal to "
<< cellProc.name() << " for use in postprocessing"
<< endl;
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
class delayedNewLine
{
mutable bool first_;
public:
delayedNewLine()
:
first_(true)
{}
friend Ostream& operator<<(Ostream& os, const delayedNewLine& dnl)
{
if (!dnl.first_) os << nl;
dnl.first_ = false;
return os;
}
};
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Reconstruct fields of a parallel case"
);
argList::noParallel();
#include "addRegionOption.H"
#include "addAllRegionsOption.H"
argList::addBoolOption
(
"cellProc",
"write cell processor indices as a volScalarField::Internal for "
"post-processing"
);
argList::addOption
(
"fields",
"list",
"specify a list of fields to be reconstructed. Eg, '(U T p)' - "
"regular expressions not currently supported"
);
argList::addBoolOption
(
"noFields",
"skip reconstructing fields"
);
argList::addOption
(
"lagrangianFields",
"list",
"specify a list of lagrangian fields to be reconstructed. Eg, '(U d)' -"
"regular expressions not currently supported, "
"positions always included"
);
argList::addBoolOption
(
"noLagrangian",
"skip reconstructing lagrangian positions and fields"
);
argList::addBoolOption
(
"noSets",
"skip reconstructing cellSets, faceSets, pointSets"
);
argList::addBoolOption
(
"newTimes",
"only reconstruct new times (i.e. that do not exist already)"
);
// Include explicit constant options, and explicit zero option (to prevent
// the user accidentally trashing the initial fields)
timeSelector::addOptions(true, true);
#include "setRootCase.H"
const bool writeCellProc = args.optionFound("cellProc");
HashSet selectedFields;
if (args.optionFound("fields"))
{
args.optionLookup("fields")() >> selectedFields;
}
const bool noFields = args.optionFound("noFields");
if (noFields)
{
Info<< "Skipping reconstructing fields" << nl << endl;
}
const bool noLagrangian = args.optionFound("noLagrangian");
if (noLagrangian)
{
Info<< "Skipping reconstructing lagrangian positions and fields"
<< nl << endl;
}
const bool noReconstructSets = args.optionFound("noSets");
if (noReconstructSets)
{
Info<< "Skipping reconstructing cellSets, faceSets and pointSets"
<< nl << endl;
}
HashSet selectedLagrangianFields;
if (args.optionFound("lagrangianFields"))
{
if (noLagrangian)
{
FatalErrorInFunction
<< "Cannot specify noLagrangian and lagrangianFields "
<< "options together"
<< exit(FatalError);
}
args.optionLookup("lagrangianFields")() >> selectedLagrangianFields;
}
// Set time from database
Info<< "Create time" << nl << endl;
processorRunTimes runTimes(Foam::Time::controlDictName, args);
// Get the times to reconstruct
instantList times = runTimes.selectProc(args);
const Time& runTime = runTimes.procTimes()[0];
#include "setRegionNames.H"
// Determine the processor count
const label nProcs = fileHandler().nProcs
(
args.path(),
regionNames[0] == polyMesh::defaultRegion
? word::null
: regionNames[0]
);
if (!nProcs)
{
FatalErrorInFunction
<< "No processor* directories found"
<< exit(FatalError);
}
// Warn fileHandler of number of processors
const_cast(fileHandler()).setNProcs(nProcs);
// Quit if no times
if (times.empty())
{
WarningInFunction << "No times selected" << nl << endl;
exit(1);
}
// If only reconstructing new times then filter out existing times
if (args.optionFound("newTimes"))
{
// Get all existing times
const instantList existingTimes = runTimes.completeTime().times();
// Put into a set
HashSet existingTimesSet;
existingTimesSet.resize(2*existingTimes.size());
forAll(existingTimes, i)
{
existingTimesSet.insert(existingTimes[i].name());
}
// Remove times from the existing time set by shuffling up
label timei = 0;
forAll(times, timej)
{
if (!existingTimesSet.found(times[timej].name()))
{
times[timei ++] = times[timej];
}
}
times.resize(timei);
}
// Quit if no times
if (times.empty())
{
Info<< "All times already reconstructed" << nl << nl
<< "End" << nl << endl;
return 0;
}
// Create meshes
multiDomainDecomposition regionMeshes(runTimes, regionNames);
if (regionMeshes.readReconstruct(!noReconstructSets))
{
Info<< endl;
if (writeCellProc)
{
forAll(regionNames, regioni)
{
writeDecomposition(regionMeshes.meshes(regioni)());
Info<< endl;
fileHandler().flush();
}
}
}
// Loop over all times
forAll(times, timei)
{
// Set the time
runTimes.setTime(times[timei], timei);
Info<< "Time = " << runTimes.completeTime().userTimeName()
<< nl << endl;
// Update the meshes
const fvMesh::readUpdateState stat =
regionMeshes.readUpdateReconstruct();
if (stat >= fvMesh::TOPO_CHANGE) Info<< endl;
// Write the mesh out (if anything has changed)
regionMeshes.writeComplete(!noReconstructSets);
// Write the decomposition, if necessary
forAll(regionNames, regioni)
{
if (writeCellProc && stat >= fvMesh::TOPO_CHANGE)
{
writeDecomposition(regionMeshes.meshes(regioni)());
Info<< endl;
fileHandler().flush();
}
}
// Do a region-by-region reconstruction of all the available fields
forAll(regionNames, regioni)
{
const word& regionName = regionNames[regioni];
const word regionDir =
regionName == polyMesh::defaultRegion ? word::null : regionName;
const delayedNewLine dnl;
// Prefixed scope
{
const RegionConstRef meshes =
regionMeshes.meshes(regioni);
// Search for objects at this time
IOobjectList objects
(
meshes().procMeshes()[0],
runTimes.procTimes()[0].name()
);
if (!noFields)
{
Info<< dnl << "Reconstructing FV fields" << endl;
if
(
fvFieldReconstructor::reconstructs
(
objects,
selectedFields
)
)
{
fvFieldReconstructor fvReconstructor
(
meshes().completeMesh(),
meshes().procMeshes(),
meshes().procFaceAddressing(),
meshes().procCellAddressing(),
meshes().procFaceAddressingBf()
);
#define DO_FV_VOL_INTERNAL_FIELDS_TYPE(Type, nullArg) \
fvReconstructor.reconstructVolInternalFields \
(objects, selectedFields);
FOR_ALL_FIELD_TYPES(DO_FV_VOL_INTERNAL_FIELDS_TYPE)
#undef DO_FV_VOL_INTERNAL_FIELDS_TYPE
#define DO_FV_VOL_FIELDS_TYPE(Type, nullArg) \
fvReconstructor.reconstructVolFields \
(objects, selectedFields);
FOR_ALL_FIELD_TYPES(DO_FV_VOL_FIELDS_TYPE)
#undef DO_FV_VOL_FIELDS_TYPE
#define DO_FV_SURFACE_FIELDS_TYPE(Type, nullArg) \
fvReconstructor.reconstructFvSurfaceFields \
(objects, selectedFields);
FOR_ALL_FIELD_TYPES(DO_FV_SURFACE_FIELDS_TYPE)
#undef DO_FV_SURFACE_FIELDS_TYPE
}
else
{
Info<< dnl << " (no FV fields)" << endl;
}
}
if (!noFields)
{
Info<< dnl << "Reconstructing point fields" << endl;
if
(
pointFieldReconstructor::reconstructs
(
objects,
selectedFields
)
)
{
pointFieldReconstructor pointReconstructor
(
pointMesh::New(meshes().completeMesh()),
meshes().procMeshes(),
meshes().procPointAddressing()
);
#define DO_POINT_FIELDS_TYPE(Type, nullArg) \
pointReconstructor.reconstructFields \
(objects, selectedFields);
FOR_ALL_FIELD_TYPES(DO_POINT_FIELDS_TYPE)
#undef DO_POINT_FIELDS_TYPE
}
else
{
Info<< dnl << " (no point fields)" << endl;
}
}
if (!noLagrangian)
{
// Search for clouds that exist on any processor and add
// them into this table of cloud objects
HashTable cloudsObjects;
forAll(runTimes.procTimes(), proci)
{
// Find cloud directories
fileNameList cloudDirs
(
fileHandler().readDir
(
fileHandler().filePath
(
runTimes.procTimes()[proci].timePath()
/regionDir
/cloud::prefix
),
fileType::directory
)
);
// Add objects in any found cloud directories
forAll(cloudDirs, i)
{
// Pass if we already have an objects for this name
HashTable::const_iterator iter =
cloudsObjects.find(cloudDirs[i]);
if (iter != cloudsObjects.end()) continue;
// Do local scan for valid cloud objects
IOobjectList cloudObjs
(
meshes().procMeshes()[proci],
runTimes.procTimes()[proci].name(),
cloud::prefix/cloudDirs[i],
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
);
// If "positions" is present, then add to the table
if (cloudObjs.lookup(word("positions")))
{
cloudsObjects.insert(cloudDirs[i], cloudObjs);
}
}
}
// Reconstruct the objects found above
if (cloudsObjects.size())
{
forAllConstIter
(
HashTable,
cloudsObjects,
iter
)
{
const word cloudName =
string::validate(iter.key());
const IOobjectList& cloudObjects = iter();
Info<< dnl << "Reconstructing lagrangian fields "
<< "for cloud " << cloudName << endl;
if
(
lagrangianFieldReconstructor::reconstructs
(
cloudObjects,
selectedLagrangianFields
)
)
{
lagrangianFieldReconstructor
lagrangianReconstructor
(
meshes().completeMesh(),
meshes().procMeshes(),
meshes().procFaceAddressing(),
meshes().procCellAddressing(),
cloudName
);
#define DO_CLOUD_FIELDS_TYPE(Type, nullArg) \
lagrangianReconstructor \
.reconstructFields \
(cloudObjects, selectedLagrangianFields);
DO_CLOUD_FIELDS_TYPE(label, );
FOR_ALL_FIELD_TYPES(DO_CLOUD_FIELDS_TYPE)
#undef DO_CLOUD_FIELDS_TYPE
}
else
{
Info<< dnl << " (no lagrangian fields)"
<< endl;
}
}
}
}
}
Info<< dnl;
}
// Collect the uniform directory
if (haveUniform(runTimes))
{
Info<< "Collecting uniform files" << endl;
reconstructUniform(runTimes);
Info<< endl;
}
if (regionNames == wordList(1, polyMesh::defaultRegion)) continue;
// Collect the region uniform directories
forAll(regionNames, regioni)
{
const word& regionName = regionNames[regioni];
const word regionDir =
regionName == polyMesh::defaultRegion ? word::null : regionName;
if (haveUniform(runTimes, regionDir))
{
// Prefixed scope
{
const RegionConstRef meshes =
regionMeshes.meshes(regioni);
Info<< "Collecting uniform files" << endl;
reconstructUniform(runTimes, regionDir);
}
Info<< endl;
}
}
}
Info<< "End" << nl << endl;
return 0;
}
// ************************************************************************* //