/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | Website: https://openfoam.org \\ / A nd | Copyright (C) 2011-2019 OpenFOAM Foundation \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM. If not, see . Class Foam::basicThermo Description Abstract base-class for fluid and solid thermodynamic properties SourceFiles basicThermo.C \*---------------------------------------------------------------------------*/ #ifndef basicThermo_H #define basicThermo_H #include "volFields.H" #include "typeInfo.H" #include "IOdictionary.H" #include "autoPtr.H" #include "wordIOList.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // namespace Foam { /*---------------------------------------------------------------------------*\ Class basicThermo Declaration \*---------------------------------------------------------------------------*/ class basicThermo : public IOdictionary { protected: // Protected data //- Phase-name const word& phaseName_; // Fields //- Temperature [K] volScalarField T_; //- Laminar thermal diffusivity [kg/m/s] volScalarField alpha_; //- Should the dpdt term be included in the enthalpy equation Switch dpdt_; // Protected Member Functions //- Construct as copy (not implemented) basicThermo(const basicThermo&); volScalarField& lookupOrConstruct ( const fvMesh& mesh, const char* name ) const; //- Return the enthalpy/internal energy field boundary types // by interrogating the temperature field boundary types wordList heBoundaryTypes(); //- Return the enthalpy/internal energy field boundary base types // by interrogating the temperature field boundary types wordList heBoundaryBaseTypes(); public: //- Runtime type information TypeName("basicThermo"); //- Declare run-time constructor selection table declareRunTimeSelectionTable ( autoPtr, basicThermo, fvMesh, (const fvMesh& mesh, const word& phaseName), (mesh, phaseName) ); // Constructors //- Construct from mesh and phase name basicThermo ( const fvMesh&, const word& phaseName ); //- Construct from mesh, dictionary and phase name basicThermo ( const fvMesh&, const dictionary&, const word& phaseName ); // Selectors //- Generic lookup for thermodynamics package thermoTypeName template static typename Table::iterator lookupThermo ( const dictionary& thermoTypeDict, Table* tablePtr, const int nCmpt, const char* cmptNames[], const word& thermoTypeName ); //- Generic lookup for each of the related thermodynamics packages template static typename Table::iterator lookupThermo ( const dictionary& thermoDict, Table* tablePtr ); //- Generic New for each of the related thermodynamics packages template static autoPtr New ( const fvMesh&, const word& phaseName=word::null ); //- Generic New for each of the related thermodynamics packages template static autoPtr New ( const fvMesh&, const dictionary&, const word& phaseName=word::null ); //- Specialisation of the Generic New for basicThermo static autoPtr New ( const fvMesh&, const word& phaseName=word::null ); //- Destructor virtual ~basicThermo(); // Member Functions static const word dictName; static word phasePropertyName ( const word& name, const word& phaseName ) { return IOobject::groupName(name, phaseName); } word phasePropertyName(const word& name) const { return basicThermo::phasePropertyName(name, phaseName_); } static const basicThermo& lookupThermo(const fvPatchScalarField& pf); //- Check that the thermodynamics package is consistent // with energy forms supported by the application void validate ( const string& app, const word& ) const; //- Check that the thermodynamics package is consistent // with energy forms supported by the application void validate ( const string& app, const word&, const word& ) const; //- Check that the thermodynamics package is consistent // with energy forms supported by the application void validate ( const string& app, const word&, const word&, const word& ) const; //- Check that the thermodynamics package is consistent // with energy forms supported by the application void validate ( const string& app, const word&, const word&, const word&, const word& ) const; //- Split name of thermo package into a list of the components names static wordList splitThermoName ( const word& thermoName, const int nCmpt ); //- Update properties virtual void correct() = 0; //- Return the name of the thermo physics virtual word thermoName() const = 0; //- Return true if the equation of state is incompressible // i.e. rho != f(p) virtual bool incompressible() const = 0; //- Return true if the equation of state is isochoric // i.e. rho = const virtual bool isochoric() const = 0; //- Should the dpdt term be included in the enthalpy equation Switch dpdt() const { return dpdt_; } // Access to thermodynamic state variables //- Density [kg/m^3] virtual tmp rho() const = 0; //- Density for patch [kg/m^3] virtual tmp rho(const label patchi) const = 0; //- Enthalpy/Internal energy [J/kg] // Non-const access allowed for transport equations virtual volScalarField& he() = 0; //- Enthalpy/Internal energy [J/kg] virtual const volScalarField& he() const = 0; //- Enthalpy/Internal energy // for given pressure and temperature [J/kg] virtual tmp he ( const volScalarField& p, const volScalarField& T ) const = 0; //- Enthalpy/Internal energy for cell-set [J/kg] virtual tmp he ( const scalarField& T, const labelList& cells ) const = 0; //- Enthalpy/Internal energy for patch [J/kg] virtual tmp he ( const scalarField& T, const label patchi ) const = 0; //- Absolute enthalpy [J/kg] virtual tmp ha() const = 0; //- Absolute enthalpy // for given pressure and temperature [J/kg] virtual tmp ha ( const volScalarField& p, const volScalarField& T ) const = 0; //- Absolute enthalpy for cell-set [J/kg] virtual tmp ha ( const scalarField& T, const labelList& cells ) const = 0; //- Absolute enthalpy for patch [J/kg] virtual tmp ha ( const scalarField& T, const label patchi ) const = 0; //- Chemical enthalpy [J/kg] virtual tmp hc() const = 0; //- Temperature from enthalpy/internal energy for cell-set virtual tmp THE ( const scalarField& h, const scalarField& T0, // starting temperature const labelList& cells ) const = 0; //- Temperature from enthalpy/internal energy for patch virtual tmp THE ( const scalarField& h, const scalarField& T0, // starting temperature const label patchi ) const = 0; // Fields derived from thermodynamic state variables //- Temperature [K] virtual const volScalarField& T() const; //- Temperature [K] // Non-const access allowed for transport equations virtual volScalarField& T(); //- Heat capacity at constant pressure [J/kg/K] virtual tmp Cp() const = 0; //- Heat capacity at constant pressure for patch [J/kg/K] virtual tmp Cp ( const scalarField& T, const label patchi ) const = 0; //- Heat capacity at constant volume [J/kg/K] virtual tmp Cv() const = 0; //- Heat capacity at constant volume for patch [J/kg/K] virtual tmp Cv ( const scalarField& T, const label patchi ) const = 0; //- Heat capacity at constant pressure/volume [J/kg/K] virtual tmp Cpv() const = 0; //- Heat capacity at constant pressure/volume for patch [J/kg/K] virtual tmp Cpv ( const scalarField& T, const label patchi ) const = 0; //- Heat capacity ratio [] virtual tmp CpByCpv() const = 0; //- Heat capacity ratio for patch [] virtual tmp CpByCpv ( const scalarField& T, const label patchi ) const = 0; // Access to transport state variables //- Thermal diffusivity for enthalpy of mixture [kg/m/s] virtual const volScalarField& alpha() const; //- Thermal diffusivity for enthalpy of mixture for patch [kg/m/s] virtual const scalarField& alpha ( const label patchi ) const; // Fields derived from transport state variables //- Thermal diffusivity for temperature of mixture [W/m/K] virtual tmp kappa() const = 0; //- Thermal diffusivity for temperature of mixture // for patch [W/m/K] virtual tmp kappa ( const label patchi ) const = 0; //- Thermal diffusivity for energy of mixture [kg/m/s] virtual tmp alphahe() const = 0; //- Thermal diffusivity for energy of mixture for patch [kg/m/s] virtual tmp alphahe(const label patchi) const = 0; //- Read thermophysical properties dictionary virtual bool read(); }; // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // } // End namespace Foam // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // #ifdef NoRepository #include "basicThermoTemplates.C" #endif // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // #endif // ************************************************************************* //