/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | Website: https://openfoam.org \\ / A nd | Copyright (C) 2018-2022 OpenFOAM Foundation \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM. If not, see . \*---------------------------------------------------------------------------*/ #include "phaseForces.H" #include "addToRunTimeSelectionTable.H" #include "fvcGrad.H" #include "dragModel.H" #include "virtualMassModel.H" #include "liftModel.H" #include "wallLubricationModel.H" #include "turbulentDispersionModel.H" // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * // namespace Foam { namespace functionObjects { defineTypeNameAndDebug(phaseForces, 0); addToRunTimeSelectionTable(functionObject, phaseForces, dictionary); } } // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * // Foam::functionObjects::phaseForces::phaseForces ( const word& name, const Time& runTime, const dictionary& dict ) : fvMeshFunctionObject(name, runTime, dict), phase_ ( mesh_.lookupObject ( IOobject::groupName("alpha", dict.lookup("phase")) ) ), fluid_(mesh_.lookupObject(phaseSystem::propertiesName)) { read(dict); forAll(fluid_.phases(), phasei) { const phaseModel& otherPhase = fluid_.phases()[phasei]; if (&otherPhase == &phase_) continue; const phaseInterface interface(phase_, otherPhase); if (fluid_.foundInterfacialModel(interface)) { forceFields_.insert ( dragModel::typeName, new volVectorField ( IOobject ( IOobject::groupName("dragForce", phase_.name()), mesh_.time().name(), mesh_ ), mesh_, dimensionedVector(dimForce/dimVolume, Zero) ) ); } if (fluid_.foundInterfacialModel(interface)) { forceFields_.insert ( virtualMassModel::typeName, new volVectorField ( IOobject ( IOobject::groupName ( "virtualMassForce", phase_.name() ), mesh_.time().name(), mesh_ ), mesh_, dimensionedVector(dimForce/dimVolume, Zero) ) ); } if (fluid_.foundInterfacialModel(interface)) { forceFields_.insert ( liftModel::typeName, new volVectorField ( IOobject ( IOobject::groupName("liftForce", phase_.name()), mesh_.time().name(), mesh_ ), mesh_, dimensionedVector(dimForce/dimVolume, Zero) ) ); } if ( fluid_.foundInterfacialModel (interface) ) { forceFields_.insert ( wallLubricationModel::typeName, new volVectorField ( IOobject ( IOobject::groupName ( "wallLubricationForce", phase_.name() ), mesh_.time().name(), mesh_ ), mesh_, dimensionedVector(dimForce/dimVolume, Zero) ) ); } if ( fluid_.foundInterfacialModel (interface) ) { forceFields_.insert ( turbulentDispersionModel::typeName, new volVectorField ( IOobject ( IOobject::groupName ( "turbulentDispersionForce", phase_.name() ), mesh_.time().name(), mesh_ ), mesh_, dimensionedVector(dimForce/dimVolume, Zero) ) ); } } } // * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * // Foam::functionObjects::phaseForces::~phaseForces() {} // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * // bool Foam::functionObjects::phaseForces::read(const dictionary& dict) { fvMeshFunctionObject::read(dict); return true; } bool Foam::functionObjects::phaseForces::execute() { // Zero the force fields forAllConstIter ( HashPtrTable, forceFields_, forceFieldIter ) { *forceFieldIter() = Zero; } // Add the forces from all the interfaces which contain this phase forAll(fluid_.phases(), phasei) { const phaseModel& otherPhase = fluid_.phases()[phasei]; if (&otherPhase == &phase_) continue; const phaseInterface interface(phase_, otherPhase); if (fluid_.foundInterfacialModel(interface)) { *forceFields_[dragModel::typeName] += fluid_.lookupInterfacialModel(interface).K() *(otherPhase.U() - phase_.U()); } if (fluid_.foundInterfacialModel(interface)) { *forceFields_[virtualMassModel::typeName] += fluid_.lookupInterfacialModel (interface).K() *(otherPhase.DUDt() - phase_.DUDt()); } if (fluid_.foundInterfacialModel(interface)) { *forceFields_[liftModel::typeName] += (&interface.phase1() == &phase_ ? -1 : +1) *fluid_.lookupInterfacialModel(interface).F(); } if ( fluid_.foundInterfacialModel (interface) ) { *forceFields_[wallLubricationModel::typeName] += (&interface.phase1() == &phase_ ? -1 : +1) *fluid_.lookupInterfacialModel (interface).F(); } if ( fluid_.foundInterfacialModel (interface) ) { *forceFields_[turbulentDispersionModel::typeName] += fluid_.lookupInterfacialModel (interface).D() *fvc::grad ( otherPhase /max(phase_ + otherPhase, otherPhase.residualAlpha()) ); } } return true; } bool Foam::functionObjects::phaseForces::write() { forAllConstIter ( HashPtrTable, forceFields_, forceFieldIter ) { writeObject(forceFieldIter()->name()); } return true; } // ************************************************************************* //