Files
OpenFOAM-12/applications/utilities/preProcessing/snappyHexMeshConfig/snappyHexMeshConfig.C

689 lines
20 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2023-2024 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
snappyHexMeshConfig
Description
Preconfigures blockMeshDict, surfaceFeaturesDict and snappyHexMeshDict
files based on the case surface geometry files.
Starting from a standard OpenFOAM case, this utility locates surface
geometry files, e.g. OBJ, STL format, in the constant/geometry directory.
It writes out the configuration files for mesh generation with
snappyHexMesh based on assumptions which can be overridden by options on
the command line.
The utility processes the surface geometry files, attempting to anticipate
their intended purpose, trying in particular to recognise whether the
domain represents an external or internal flow. If there is a surface
which is closed, and is either single or surrounds all other surfaces,
then it is assumed that it forms the external boundary of an internal
flow. This assumption is overridden if the bounds of the background mesh
are specified using the '-bounds' option and they are more than 50% larger
than the surface bounds.
Surfaces which form boundaries of the domain may contain named regions
that are intended to become patches in the final mesh. Any surface region
whose name begins with 'inlet' or 'outlet' will become a patch of the same
name in the final mesh. On an external surface (for an internal flow),
regions can be identified as inlets and outlets using the '-inletRegions'
and '-outletRegions' options, respectively. When either option specifies a
single region, the resulting patch name will be specifically 'inlet' or
'outlet', respectively. Surfaces which are contained within the domain,
which do not surround or intersect other surfaces, are assumed by default
to be wall patches. Any closed surface which surrounds another (but not an
external surface) is used to form a cellZone within the mesh. Any surface
can be specifically identified as a cellZone with the '-cellZones' option,
with the additional '-baffles' and '-rotatingZones' options available to
assign a surface to a more specific use.
The background mesh for snappyHexMesh is a single block generated by
blockMesh, configured using a blockMeshDict file. The block bounds are
automatically calculated, but can be overridden by the '-bounds'
option. The number of cells is calculated to produce a fairly small
prototype mesh. The cell density can be overridden by the '-nCells' option
or can be scaled up by an integer factor using the '-refineBackground'
option. When the background mesh is required to form patches in the final
mesh, e.g. for an external flow, the user can specify the names and types
of the patches corresponding to the six block faces using options such as
'-xMinPatch', '-xMaxPatch', etc. The name and type of the default patch,
formed from block faces which are not configured, can also be specified
with the '-defaultPatch' option. The utility provides placeholder entries
for all block faces unless the '-clearBoundary' option is used. A special
'-cylindricalBackground' option generates a cylindrical background mesh,
oriented along the z-axis along x = y = 0.
The snappyHexMesh configuration is generated automatically, applying a set
of defaults to the main configuration parameters. By default, implicit
feature capturing is configured. Explicit feature capturing can
alternatively be selected with the '-explicitFeatures' option, when an
additional surfaceFeaturesDict file is written for the user to generate the
features files with the surfaceFeatures utility. Refinement levels can be
controlled with a range of options including: '-refinementLevel' for the
baseline refinement level; '-refinementSurfaces' for levels on specific
surfaces; '-refinementRegions' for levels inside specific surfaces;
'-refinementBoxes' for quick, box-shaped refinement regions specified by min
and max bounds; '-refinementDists' for distance-based refinement; and
'-nCellsBetweenLevels' to control the transition between refinement
levels. A '-layers' option controls additional layers of cells at specified
surfaces. The insidePoint parameter is set to '(0 0 0)' by default but can
be overridden using the '-insidePoint' option.
Usage
\b snappyHexMeshConfig [OPTIONS]
Options:
- \par -surface \<file\>
Single surface geometry file for meshing
- \par -nCells \<cells\>
Number of cells in each direction, e.g. '(10 20 30)'
- \par -bounds \<box\>
Bounding box of the mesh, e.g. '((-10 -5 0) (10 5 10))'
- \par -cylindricalBackground
Generate a cylindrical background mesh aligned with the z-axis
- \par -noBackground
Do not write a blockMeshDict file
- \par -refineBackground \<int\>
Integer multiplier for the number of cells (>= 1)
- \par -refinementLevel \<int\>
Refinement level used by snappyHexMesh, default 2
- \par -surfaceLevels \<entry\>
Refinement level at specified surfaces, e.g. '((pipe 2) (baffles 1))'
- \par -refinementRegions \<entry\>
Refinement regions specified by '( (\<surface\> \<level\>) (...) )'
- \par -refinementBoxes \<entry\>
Refinement boxes specified by '( (\<min\> \<max\> \<level\>) (...) )'
- \par -refinementDists \<entry\>
Refinement distance specified by
'( (\<surface\> \<dist\> \<level\>) (...) )'
- \par -defaultPatch \<entry\>
Name and type of default patch, '(\<name\> \<type\>)'
- \par -xMinPatch (-xMaxPatch, -yMinPatch, etc...) \<entry\>
Name and type of the xMin (xMax, yMin, etc...) patch,
'(\<name\> \<type\>)'
- \par -clearBoundary,
Do not set default patch entries, i.e. xMin, xMax, yMin, etc...
- \par -explicitFeatures,
Use explicit feature capturing, default is implicit
- \par -layers \<entry\>
Number of layers on specified surfaces, e.g. '((car 3) (ground 4))'
- \par -firstLayerThickness \<value\>
Specify the thickness of the near wall cells for layer addition
- \par -layerExpansionRatio \<value\>
Specify the expansion ratio between layers, default 1.2
- \par -cellZones \<list\>
Surfaces that form cellZones, e.g. '(porousZone heatSource)'
- \par -rotatingZones \<list\>
Surfaces that form rotatingZones, e.g. '(rotatingZone)'
- \par -baffles \<list\>
Surfaces that form baffles, e.g. '(helical)'
- \par -insidePoint \<point\>
Point location inside the region of geometry to be meshed
- \par -nCellsBetweenLevels \<int\>
Number of cells at successive refinement levels, default 3
- \par -inletRegions \<list\>
Inlet regions on an external surface, e.g. '(inletA inletB)'
- \par -outletRegions \<list\>
Outlet regions on an external surface, e.g. '(outletA outletB)'
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "Time.H"
#include "meshingSurface.H"
#include "blockMeshCartesianConfiguration.H"
#include "blockMeshCylindricalConfiguration.H"
#include "snappyHexMeshConfiguration.H"
#include "meshQualityConfiguration.H"
#include "surfaceFeaturesConfiguration.H"
#include "boundBox.H"
#include "searchableSurface.H"
#include "Tuple3.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
void readPatchOption
(
const argList& args,
HashTable<Pair<word>>& opts,
const word& name
)
{
if (args.optionFound(name))
{
opts.insert(name, args.optionRead<Pair<word>>(name));
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::usageMin = 32;
argList::usageMax = 105;
argList::addNote
(
"Writes blockMeshDict, surfaceFeaturesDict and snappyHexMeshDict "
"files from surface geometry files.\n"
"For more information, see 'Description' in snappyHexMeshConfig.C "
"or run\n\n foamInfo snappyHexMeshConfig"
);
#include "removeCaseOptions.H"
argList::addOption
(
"surface",
"file",
"single surface geometry file for meshing"
);
argList::addOption
(
"nCells",
"cells",
"number of cells in each direction, e.g. '(10 20 30)'"
);
argList::addOption
(
"bounds",
"box",
"bounding box of the mesh, e.g. '((-10 -5 0) (10 5 10))'"
);
argList::addBoolOption
(
"cylindricalBackground",
"generate a cylindrical background mesh aligned with the z-axis"
);
argList::addBoolOption
(
"noBackground",
"do not write a blockMeshDict file"
);
argList::addOption
(
"refineBackground",
"int",
"integer multiplier for the number of cells (>= 1)"
);
argList::addOption
(
"refinementLevel",
"int",
"refinement level used by snappyHexMesh, default 2"
);
argList::addOption
(
"surfaceLevels",
"entry",
"refinement level at specified surfaces, e.g. '((pipe 2) (baffles 1))'"
);
argList::addOption
(
"refinementRegions",
"entry",
"refinement regions specified by '( (<surface> <level>) (...) )'"
);
argList::addOption
(
"refinementBoxes",
"entry",
"refinement boxes specified by '( (<min> <max> <level>) (...) )'"
);
argList::addOption
(
"refinementDists",
"entry",
"refinement distance specified by "
"'( (<surface> <dist> <level>) (...) )'"
);
argList::addOption
(
"defaultPatch",
"entry",
"name and type of default patch, '(<name> <type>)'"
);
List<word> patches(blockMeshCartesianConfiguration::patches);
forAll(patches, i)
{
argList::addOption
(
patches[i] + "Patch",
"entry",
"patch in the "
+ patches[i]
+ " direction, format '(<name> <type>)'"
);
}
argList::addBoolOption
(
"clearBoundary",
"do not set default patch entries, i.e. xMin, xMax, etc"
);
argList::addBoolOption
(
"explicitFeatures",
"use explicit feature capturing"
);
argList::addOption
(
"layers",
"entry",
"number of layers on specified surfaces, e.g. '((car 3) (ground 4))'"
);
argList::addOption
(
"firstLayerThickness",
"value",
"specify the thickness of the near wall cells for layer addition"
);
argList::addOption
(
"layerExpansionRatio",
"value",
"specify the expansion ratio between layers, default 1.2"
);
argList::addOption
(
"cellZones",
"list",
"surfaces that form cellZones, e.g. '(porousZone heatSource)'"
);
argList::addOption
(
"rotatingZones",
"list",
"surfaces that form rotatingZones, e.g. '(rotatingZone)'"
);
argList::addOption
(
"baffles",
"list",
"surfaces that form baffles, e.g. '(helical)'"
);
argList::addOption
(
"insidePoint",
"point",
"point location inside the region of geometry to be meshed"
);
argList::addOption
(
"nCellsBetweenLevels",
"int",
"number of cells at successive refinement levels, default 3"
);
argList::addOption
(
"inletRegions",
"list",
"inlet regions on an external surface, e.g. '(inletA inletB)'"
);
argList::addOption
(
"outletRegions",
"list",
"outlet regions on an external surface, e.g. '(outletA outletB)'"
);
#include "setRootCase.H"
#include "createTime.H"
fileNameList surfaceNames;
if (args.optionFound("surface"))
{
surfaceNames.append(args.optionRead<fileName>("surface"));
}
else
{
const fileName surfDir
(
runTime.constant()/searchableSurface::geometryDir(runTime)
);
// Reads files, removing "gz" extensions
fileNameList files(readDir(surfDir));
// Check valid extensions and add the path to the names
forAll(files, i)
{
if (!meshingSurface::isSurfaceExt(files[i]))
{
continue;
}
surfaceNames.append(surfDir/files[i]);
}
// Need to exit if no surface geometry files found
if (surfaceNames.empty())
{
FatalErrorInFunction
<< "No surface geometry files found in "
<< surfDir << nl
<< "or provided using the '-surface' option"
<< exit(FatalError);
}
}
wordList cellZoneNames;
if (args.optionFound("cellZones"))
{
cellZoneNames.append(args.optionReadList<word>("cellZones"));
}
wordList rotatingZoneNames;
if (args.optionFound("rotatingZones"))
{
rotatingZoneNames.append(args.optionReadList<word>("rotatingZones"));
}
wordList baffleNames;
if (args.optionFound("baffles"))
{
baffleNames.append(args.optionReadList<word>("baffles"));
}
boundBox bb;
if (args.optionFound("bounds"))
{
List<vector> bounds(args.optionReadList<vector>("bounds"));
if (bounds.size() != 2)
{
FatalErrorInFunction
<< "Argument to '-bounds'"
<< " should be of the form '(<min> <max>)'" << nl
<< "with the <min> and <max> bounds of a bounding box"
<< "\n\nFound instead the argument: "
<< bounds
<< exit(FatalError);
}
bb = boundBox(bounds[0], bounds[1]);
Info<< "Bounding box specified by '-bounds' option: "
<< bb << endl;
}
wordList inletRegions;
if (args.optionFound("inletRegions"))
{
inletRegions.append(args.optionReadList<word>("inletRegions"));
}
wordList outletRegions;
if (args.optionFound("outletRegions"))
{
outletRegions.append(args.optionReadList<word>("outletRegions"));
}
meshingSurfaceList surfaces
(
runTime,
surfaceNames,
cellZoneNames,
rotatingZoneNames,
baffleNames,
bb,
inletRegions,
outletRegions
);
const Vector<label> nCells
(
args.optionLookupOrDefault("nCells", Vector<label>::zero)
);
const label refineFactor
(
args.optionLookupOrDefault("refineBackground", 1)
);
HashTable<Pair<word>> patchOpts(7);
patches.append("default");
forAll(patches, i)
{
readPatchOption(args, patchOpts, patches[i] + "Patch");
}
const bool clearBoundary(args.optionFound("clearBoundary"));
if (!args.optionFound("noBackground"))
{
if (args.optionFound("cylindricalBackground"))
{
blockMeshCylindricalConfiguration blockMeshConfig
(
"blockMeshDict",
runTime.system(),
runTime,
surfaces,
args.optionFound("bounds"),
nCells,
refineFactor,
patchOpts,
clearBoundary
);
blockMeshConfig.write();
}
else
{
blockMeshCartesianConfiguration blockMeshConfig
(
"blockMeshDict",
runTime.system(),
runTime,
surfaces,
args.optionFound("bounds"),
nCells,
refineFactor,
patchOpts,
clearBoundary
);
blockMeshConfig.write();
}
}
// snappyHexMeshDict options
const label refinementLevel
(
args.optionLookupOrDefault<label>("refinementLevel", 2)
);
List<Tuple2<word, label>> surfaceLevels;
if (args.optionFound("surfaceLevels"))
{
surfaceLevels.append
(
args.optionReadList<Tuple2<word, label>>("surfaceLevels")
);
}
List<Tuple2<word, label>> refinementRegions;
if (args.optionFound("refinementRegions"))
{
refinementRegions.append
(
args.optionReadList<Tuple2<word, label>>("refinementRegions")
);
}
List<Tuple3<vector, vector, label>> refinementBoxes;
if (args.optionFound("refinementBoxes"))
{
refinementBoxes.append
(
args.optionReadList<Tuple3<vector, vector, label>>
(
"refinementBoxes"
)
);
}
List<Tuple3<word, scalar, label>> refinementDists;
if (args.optionFound("refinementDists"))
{
refinementDists.append
(
args.optionReadList<Tuple3<word, scalar, label>>("refinementDists")
);
}
const bool explicitFeatures(args.optionFound("explicitFeatures"));
List<Tuple2<word, label>> layers;
if (args.optionFound("layers"))
{
layers.append
(
args.optionReadList<Tuple2<word, label>>("layers")
);
}
const scalar firstLayerThickness
(
args.optionLookupOrDefault<scalar>("firstLayerThickness", 0)
);
const scalar layerExpansionRatio
(
args.optionLookupOrDefault<scalar>("layerExpansionRatio", 1.2)
);
const point insidePoint
(
args.optionLookupOrDefault<point>("insidePoint", point::zero)
);
const label nCellsBetweenLevels
(
args.optionLookupOrDefault<label>("nCellsBetweenLevels", 3)
);
if (explicitFeatures)
{
surfaceFeaturesConfiguration surfaceFeaturesConfig
(
"surfaceFeaturesDict",
runTime.system(),
runTime,
surfaces
);
surfaceFeaturesConfig.write();
}
snappyHexMeshConfiguration snappyConfig
(
"snappyHexMeshDict",
runTime.system(),
runTime,
surfaces,
refinementLevel,
surfaceLevels,
refinementRegions,
refinementBoxes,
refinementDists,
explicitFeatures,
layers,
firstLayerThickness,
layerExpansionRatio,
insidePoint,
nCellsBetweenLevels
);
snappyConfig.write();
meshQualityConfiguration meshQualityConfig
(
"meshQualityDict",
runTime.system(),
runTime
);
meshQualityConfig.write();
Info<< "\nEnd\n" << endl;
return 0;
}
// ************************************************************************* //